Glaucoma — High Resolution Optical Coherence Tomography
Citation(s)
An L, Li P, Shen TT, Wang R High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed Opt Express. 2011 Oct 1;2(10):2770-83. doi: 10.1364/BOE.2.002770. Epub 2011 Sep 12.
Aumann S, Donner S, Fischer J, Müller F Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille JF, ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham: Springer International Publishing; 2019: 59-85.
Ishida S, Nishizawa N Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region. Biomed Opt Express. 2012 Feb 1;3(2):282-94. doi: 10.1364/BOE.3.000282. Epub 2012 Jan 11.
Liu YZ, South FA, Xu Y, Carney PS, Boppart SA Computational optical coherence tomography [Invited]. Biomed Opt Express. 2017 Feb 16;8(3):1549-1574. doi: 10.1364/BOE.8.001549. eCollection 2017 Mar 1.
Ly A, Phu J, Katalinic P, Kalloniatis M An evidence-based approach to the routine use of optical coherence tomography. Clin Exp Optom. 2019 May;102(3):242-259. doi: 10.1111/cxo.12847. Epub 2018 Dec 17. Review.
Mitchell P, Liew G, Gopinath B, Wong TY Age-related macular degeneration. Lancet. 2018 Sep 29;392(10153):1147-1159. doi: 10.1016/S0140-6736(18)31550-2. Review.
Saito T, Rehmsmeier M The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. eCollection 2015.
Tsang SH, Sharma T Fluorescein Angiography. Adv Exp Med Biol. 2018;1085:7-10. doi: 10.1007/978-3-319-95046-4_2.
Wolf S, Wolf-Schnurrbusch U Spectral-domain optical coherence tomography use in macular diseases: a review. Ophthalmologica. 2010;224(6):333-40. doi: 10.1159/000313814. Epub 2010 May 4. Review.
Investigation of Retinal Pathology in Eye Diseases Using High Resolution Optical Coherence Tomography (High-Res-OCT)
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.