Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017 Mar;51(6):494-503. doi: 10.1136/bjsports-2015-095841. Epub 2016 Oct 20.
Bui C, Petrofsky J, Berk L, Shavlik D, Remigio W, Montgomery S Acute effect of a single high-fat meal on forearm blood flow, blood pressure and heart rate in healthy male Asians and Caucasians: a pilot study. Southeast Asian J Trop Med Public Health. 2010 Mar;41(2):490-500.
Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, Guimaraes GV Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res. 2010 Aug;33(8):836-43. doi: 10.1038/hr.2010.72. Epub 2010 May 7.
Hennig B, Toborek M, McClain CJ High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis. J Am Coll Nutr. 2001 Apr;20(2 Suppl):97-105. doi: 10.1080/07315724.2001.10719021.
Heseltine D, Potter JF, Hartley G, Macdonald IA, James OF Blood pressure, heart rate and neuroendocrine responses to a high carbohydrate and a high fat meal in healthy young subjects. Clin Sci (Lond). 1990 Nov;79(5):517-22. doi: 10.1042/cs0790517.
Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007 Jul 18;298(3):299-308. doi: 10.1001/jama.298.3.299.
Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol. 2006 Oct;98(3):256-62. doi: 10.1007/s00421-006-0272-z. Epub 2006 Aug 3.
Parry SA, Smith JR, Corbett TR, Woods RM, Hulston CJ Short-term, high-fat overfeeding impairs glycaemic control but does not alter gut hormone responses to a mixed meal tolerance test in healthy, normal-weight individuals. Br J Nutr. 2017 Jan;117(1):48-55. doi: 10.1017/S0007114516004475. Epub 2017 Jan 24. Erratum In: Br J Nutr. 2017 Feb;117(4):622.
Patsch JR, Karlin JB, Scott LW, Smith LC, Gotto AM Jr Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1449-53. doi: 10.1073/pnas.80.5.1449.
Richter CK, Skulas-Ray AC, Gaugler TL, Lambert JD, Proctor DN, Kris-Etherton PM Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: a randomized controlled trial. Am J Clin Nutr. 2017 Feb;105(2):313-322. doi: 10.3945/ajcn.116.141804. Epub 2016 Dec 21.
Teeman CS, Kurti SP, Cull BJ, Emerson SR, Haub MD, Rosenkranz SK Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (Lond). 2016 Nov 16;13:80. doi: 10.1186/s12986-016-0142-6. eCollection 2016.
Trombold JR, Christmas KM, Machin DR, Kim IY, Coyle EF Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. J Appl Physiol (1985). 2013 Mar 15;114(6):792-800. doi: 10.1152/japplphysiol.01028.2012. Epub 2013 Jan 31.
The Effect of Moderate-Intensity Exercise on Postprandial Plasma Triglyceride Levels Following a High Fat Meal
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.