Dystonia — Thalamic Deep Brain Stimulation for Secondary Dystonia in Children and Young Adults
Citation(s)
Air EL, Ostrem JL, Sanger TD, Starr PA Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatr. 2011 Dec;8(6):566-74. doi: 10.3171/2011.8.PEDS11153.
Binder DK, Rau GM, Starr PA Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005 Apr;56(4):722-32; discussion 722-32.
Burchiel KJ Thalamotomy for movement disorders. Neurosurg Clin N Am. 1995 Jan;6(1):55-71. Review.
Hyam JA, Owen SL, Kringelbach ML, Jenkinson N, Stein JF, Green AL, Aziz TZ Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012 Jan;70(1):162-9; discussion 169. doi: 10.1227/NEU.0b013e3182262c9a. Review.
Kim JP, Chang WS, Chang JW The long-term surgical outcomes of secondary hemidystonia associated with post-traumatic brain injury. Acta Neurochir (Wien). 2012 May;154(5):823-30. doi: 10.1007/s00701-012-1306-4. Epub 2012 Feb 27.
Mink JW Special concerns in defining, studying, and treating dystonia in children. Mov Disord. 2013 Jun 15;28(7):921-5. doi: 10.1002/mds.25548. Review.
Sillay KA, Larson PS, Starr PA Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008 Feb;62(2):360-6; discussion 366-7. doi: 10.1227/01.neu.0000316002.03765.33.
Sironi VA Origin and evolution of deep brain stimulation. Front Integr Neurosci. 2011 Aug 18;5:42. doi: 10.3389/fnint.2011.00042. eCollection 2011.
Vidailhet M, Jutras MF, Grabli D, Roze E Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry. 2013 Sep;84(9):1029-42. doi: 10.1136/jnnp-2011-301714. Epub 2012 Nov 15. Review.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.