Chakraborty S, Hosen MI, Ahmed M, Shekhar HU Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. Biomed Res Int. 2018 Oct 3;2018:9836256. doi: 10.1155/2018/9836256. eCollection 2018.
Chen S, Zhang N, Shao J, Wang T, Wang X Multi-omics Perspective on the Tumor Microenvironment based on PD-L1 and CD8 T-Cell Infiltration in Urothelial Cancer. J Cancer. 2019 Jan 1;10(3):697-707. doi: 10.7150/jca.28494. eCollection 2019.
Gillies RJ, Kinahan PE, Hricak H Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
Hondermarck, H , Cancer Omics: A Special Issue to Highlight Where We Are Heading. Proteomics, 2018. 18(24): p. e180038
Horvat N, Bates DDB, Petkovska I Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY). 2019 Nov;44(11):3764-3774. doi: 10.1007/s00261-019-02042-y.
Li S, Wang K, Hou Z, Yang J, Ren W, Gao S, Meng F, Wu P, Liu B, Liu J, Yan J Use of Radiomics Combined With Machine Learning Method in the Recurrence Patterns After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Preliminary Study. Front Oncol. 2018 Dec 21;8:648. doi: 10.3389/fonc.2018.00648. eCollection 2018.
Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, Tian J, Liang C, Liu Z The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget. 2016 May 24;7(21):31401-12. doi: 10.18632/oncotarget.8919.
Lo CM, Iqbal U, Li YJ Cancer quantification from data mining to artificial intelligence. Comput Methods Programs Biomed. 2017 Jul;145:A1. doi: 10.1016/S0169-2607(17)30594-1. No abstract available.
Mayo RC, Leung J Artificial intelligence and deep learning - Radiology's next frontier? Clin Imaging. 2018 May-Jun;49:87-88. doi: 10.1016/j.clinimag.2017.11.007. Epub 2017 Nov 16.
Park BW, Kim JK, Heo C, Park KJ Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters. Sci Rep. 2020 Mar 2;10(1):3852. doi: 10.1038/s41598-020-60868-9.
Pinker K, Chin J, Melsaether AN, Morris EA, Moy L Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology. 2018 Jun;287(3):732-747. doi: 10.1148/radiol.2018172171.
Roseweir AK, McMillan DC, Horgan PG, Edwards J Colorectal cancer subtypes: Translation to routine clinical pathology. Cancer Treat Rev. 2017 Jun;57:1-7. doi: 10.1016/j.ctrv.2017.04.006. Epub 2017 May 4.
Shen TL, Fu XL [Application and prospect of artificial intelligence in cancer diagnosis and treatment]. Zhonghua Zhong Liu Za Zhi. 2018 Dec 23;40(12):881-884. doi: 10.3760/cma.j.issn.0253-3766.2018.12.001. Chinese.
Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, Goel A, Wang X Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 2019 Apr;55:37-52. doi: 10.1016/j.semcancer.2018.05.002. Epub 2018 May 18.
ATTRACT - ArTificial inTelligence-based RAdiogenomics in Colon Tumors
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.