Choi HJ, Choi SK, Lim YJ Radiosurgical techniques and clinical outcomes of gamma knife radiosurgery for brainstem arteriovenous malformations. J Korean Neurosurg Soc. 2012 Dec;52(6):534-40. doi: 10.3340/jkns.2012.52.6.534. Epub 2012 Dec 31.
Doi Y, Kanagawa M, Maya Y, Tanaka A, Oka S, Nakata N, Toyama M, Matsumoto H, Shirakami Y Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings. Nucl Med Biol. 2015 Aug;42(8):664-72. doi: 10.1016/j.nucmedbio.2015.04.008. Epub 2015 May 7.
Galldiks N, Langen KJ Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther. 2017 May;17(5):395-397. doi: 10.1080/14737140.2017.1302799. Epub 2017 Mar 11. No abstract available.
Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, Tome W Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007 Jan 1;67(1):187-95. doi: 10.1016/j.ijrobp.2006.09.033.
Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, Shirakami Y Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2014 Jun;16(3):322-9. doi: 10.1007/s11307-013-0693-0.
Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y Transport mechanisms of trans-1-amino-3-fluoro[1-(14)C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol. 2012 Jan;39(1):109-19. doi: 10.1016/j.nucmedbio.2011.06.008. Epub 2011 Sep 29.
Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, Shirakami Y Comparative evaluation of transport mechanisms of trans-1-amino-3-[(1)(8)F]fluorocyclobutanecarboxylic acid and L-[methyl-(1)(1)C]methionine in human glioma cell lines. Brain Res. 2013 Oct 16;1535:24-37. doi: 10.1016/j.brainres.2013.08.037. Epub 2013 Aug 27.
Sasajima T, Ono T, Shimada N, Doi Y, Oka S, Kanagawa M, Baden A, Mizoi K Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol. 2013 Aug;40(6):808-15. doi: 10.1016/j.nucmedbio.2013.04.007. Epub 2013 May 21.
Soltys JS, Wilson SE Directional sensitivity of velocity sense in the lumbar spine. J Appl Biomech. 2008 Aug;24(3):244-51. doi: 10.1123/jab.24.3.244.
Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging with 18F-fluciclovine: A Comparative Study with L-methyl-11C-methionine PET Imaging. Asia Ocean J Nucl Med Biol. 2017 Spring;5(2):85-94. doi: 10.22038/aojnmb.2017.8843.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.