Dietschy JM, Turley SD Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004 Aug;45(8):1375-97. doi: 10.1194/jlr.R400004-JLR200.
Dzeletovic S, Breuer O, Lund E, Diczfalusy U Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995 Feb 10;225(1):73-80. doi: 10.1006/abio.1995.1110.
Kotti T, Head DD, McKenna CE, Russell DW Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11394-9. doi: 10.1073/pnas.0805556105. Epub 2008 Aug 6.
Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3869-74. doi: 10.1073/pnas.0600316103. Epub 2006 Feb 27.
Lam TN, Hui KH, Chan DP, Lee SS Genotype-guided dose adjustment for the use of efavirenz in HIV treatment. J Infect. 2015 Nov;71(5):607-9. doi: 10.1016/j.jinf.2015.07.005. Epub 2015 Jul 18. No abstract available.
Leoni V, Caccia C 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie. 2013 Mar;95(3):595-612. doi: 10.1016/j.biochi.2012.09.025. Epub 2012 Oct 3.
Liao WL, Dodder NG, Mast N, Pikuleva IA, Turko IV Steroid and protein ligand binding to cytochrome P450 46A1 as assessed by hydrogen-deuterium exchange and mass spectrometry. Biochemistry. 2009 May 19;48(19):4150-8. doi: 10.1021/bi900168m.
Lund EG, Guileyardo JM, Russell DW cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7238-43. doi: 10.1073/pnas.96.13.7238.
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem. 2003 Jun 20;278(25):22980-8. doi: 10.1074/jbc.M303415200. Epub 2003 Apr 9.
Mast N, Andersson U, Nakayama K, Bjorkhem I, Pikuleva IA Expression of human cytochrome P450 46A1 in Escherichia coli: effects of N- and C-terminal modifications. Arch Biochem Biophys. 2004 Aug 1;428(1):99-108. doi: 10.1016/j.abb.2004.05.012.
Mast N, Charvet C, Pikuleva IA, Stout CD Structural basis of drug binding to CYP46A1, an enzyme that controls cholesterol turnover in the brain. J Biol Chem. 2010 Oct 8;285(41):31783-95. doi: 10.1074/jbc.M110.143313. Epub 2010 Jul 28.
Mast N, Li Y, Linger M, Clark M, Wiseman J, Pikuleva IA Pharmacologic stimulation of cytochrome P450 46A1 and cerebral cholesterol turnover in mice. J Biol Chem. 2014 Feb 7;289(6):3529-38. doi: 10.1074/jbc.M113.532846. Epub 2013 Dec 18.
Mast N, Liao WL, Pikuleva IA, Turko IV Combined use of mass spectrometry and heterologous expression for identification of membrane-interacting peptides in cytochrome P450 46A1 and NADPH-cytochrome P450 oxidoreductase. Arch Biochem Biophys. 2009 Mar 1;483(1):81-9. doi: 10.1016/j.abb.2009.01.002. Epub 2009 Jan 10.
Mast N, Linger M, Clark M, Wiseman J, Stout CD, Pikuleva IA In silico and intuitive predictions of CYP46A1 inhibition by marketed drugs with subsequent enzyme crystallization in complex with fluvoxamine. Mol Pharmacol. 2012 Nov;82(5):824-34. doi: 10.1124/mol.112.080424. Epub 2012 Aug 2.
Mast N, Reem R, Bederman I, Huang S, DiPatre PL, Bjorkhem I, Pikuleva IA Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci. 2011 Feb 1;52(1):594-603. doi: 10.1167/iovs.10-6021. Print 2011 Jan.
Mast N, White MA, Bjorkhem I, Johnson EF, Stout CD, Pikuleva IA Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9546-51. doi: 10.1073/pnas.0803717105. Epub 2008 Jul 9.
Mast N, Zheng W, Stout CD, Pikuleva IA Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1. Mol Pharmacol. 2013 Jul;84(1):86-94. doi: 10.1124/mol.113.085902. Epub 2013 Apr 19.
Mast N, Zheng W, Stout CD, Pikuleva IA Binding of a cyano- and fluoro-containing drug bicalutamide to cytochrome P450 46A1: unusual features and spectral response. J Biol Chem. 2013 Feb 15;288(7):4613-24. doi: 10.1074/jbc.M112.438754. Epub 2013 Jan 3.
Meaney S, Bodin K, Diczfalusy U, Bjorkhem I On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res. 2002 Dec;43(12):2130-5. doi: 10.1194/jlr.m200293-jlr200.
Morris JC The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov;43(11):2412-4. doi: 10.1212/wnl.43.11.2412-a. No abstract available.
Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell. 2004 Jul 23;15(2):259-68. doi: 10.1016/j.molcel.2004.06.019.
Ramirez DM, Andersson S, Russell DW Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol. 2008 Apr 10;507(5):1676-93. doi: 10.1002/cne.21605.
Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem. 2009;78:1017-40. doi: 10.1146/annurev.biochem.78.072407.103859.
White MA, Mast N, Bjorkhem I, Johnson EF, Stout CD, Pikuleva IA Use of complementary cation and anion heavy-atom salt derivatives to solve the structure of cytochrome P450 46A1. Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):487-95. doi: 10.1107/S0907444908004046. Epub 2008 Apr 19.
A Proof-of-Concept Clinical Research Study of Efavirenz in Patients With Alzheimer's Disease
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.