Biewener AA, Farley CT, Roberts TJ, Temaner M Muscle mechanical advantage of human walking and running: implications for energy cost. J Appl Physiol (1985). 2004 Dec;97(6):2266-74. doi: 10.1152/japplphysiol.00003.2004. Epub 2004 Jul 16.
Browne MG, Franz JR The independent effects of speed and propulsive force on joint power generation in walking. J Biomech. 2017 Apr 11;55:48-55. doi: 10.1016/j.jbiomech.2017.02.011. Epub 2017 Feb 21.
Cavagna GA, Kaneko M Mechanical work and efficiency in level walking and running. J Physiol. 1977 Jun;268(2):467--81. doi: 10.1113/jphysiol.1977.sp011866.
CAVAGNA GA, SAIBENE FP, MARGARIA R MECHANICAL WORK IN RUNNING. J Appl Physiol. 1964 Mar;19:249-56. doi: 10.1152/jappl.1964.19.2.249. No abstract available.
Collins SH, Wiggin MB, Sawicki GS Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015 Jun 11;522(7555):212-5. doi: 10.1038/nature14288. Epub 2015 Apr 1.
Csapo R, Malis V, Hodgson J, Sinha S Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J Appl Physiol (1985). 2014 Apr 15;116(8):961-9. doi: 10.1152/japplphysiol.01337.2013. Epub 2014 Feb 6.
DeVita P, Helseth J, Hortobagyi T Muscles do more positive than negative work in human locomotion. J Exp Biol. 2007 Oct;210(Pt 19):3361-73. doi: 10.1242/jeb.003970.
DeVita P, Hortobagyi T Age causes a redistribution of joint torques and powers during gait. J Appl Physiol (1985). 2000 May;88(5):1804-11. doi: 10.1152/jappl.2000.88.5.1804.
Elliott G, Sawicki GS, Marecki A, Herr H The biomechanics and energetics of human running using an elastic knee exoskeleton. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650418. doi: 10.1109/ICORR.2013.6650418.
Farris DJ, Sawicki GS The mechanics and energetics of human walking and running: a joint level perspective. J R Soc Interface. 2012 Jan 7;9(66):110-8. doi: 10.1098/rsif.2011.0182. Epub 2011 May 25.
Ferris DP, Sawicki GS, Domingo A Powered lower limb orthoses for gait rehabilitation. Top Spinal Cord Inj Rehabil. 2005;11(2):34-49. doi: 10.1310/6gl4-um7x-519h-9jyd.
Franz JR, Slane LC, Rasske K, Thelen DG Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture. 2015 Jan;41(1):192-7. doi: 10.1016/j.gaitpost.2014.10.001. Epub 2014 Oct 12.
Gottschall JS, Kram R Energy cost and muscular activity required for propulsion during walking. J Appl Physiol (1985). 2003 May;94(5):1766-72. doi: 10.1152/japplphysiol.00670.2002. Epub 2002 Dec 27.
Griffin TM, Tolani NA, Kram R Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. J Appl Physiol (1985). 1999 Jan;86(1):383-90. doi: 10.1152/jappl.1999.86.1.383.
Holt NC, Roberts TJ, Askew GN The energetic benefits of tendon springs in running: is the reduction of muscle work important? J Exp Biol. 2014 Dec 15;217(Pt 24):4365-71. doi: 10.1242/jeb.112813. Epub 2014 Nov 13.
Huang HJ, Kram R, Ahmed AA Reduction of metabolic cost during motor learning of arm reaching dynamics. J Neurosci. 2012 Feb 8;32(6):2182-90. doi: 10.1523/JNEUROSCI.4003-11.2012.
Malcolm P, Derave W, Galle S, De Clercq D A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One. 2013;8(2):e56137. doi: 10.1371/journal.pone.0056137. Epub 2013 Feb 13.
Martin PE, Rothstein DE, Larish DD Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol (1985). 1992 Jul;73(1):200-6. doi: 10.1152/jappl.1992.73.1.200.
Mian OS, Thom JM, Ardigo LP, Minetti AE, Narici MV Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta Physiol (Oxf). 2007 Jan;189(1):57-65. doi: 10.1111/j.1748-1716.2006.01634.x.
Mooney LM, Rouse EJ, Herr HM Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014 May 9;11:80. doi: 10.1186/1743-0003-11-80.
Nuckols Rich DT, Sawicki Greg Ultrasound measurements link soleus muscle dynamics and metabolic cost during human walking with elastic ankle exoskeletons. In Prep.
Onambele GL, Narici MV, Maganaris CN Calf muscle-tendon properties and postural balance in old age. J Appl Physiol (1985). 2006 Jun;100(6):2048-56. doi: 10.1152/japplphysiol.01442.2005. Epub 2006 Feb 2.
Ortega JD, Beck ON, Roby JM, Turney AL, Kram R Running for exercise mitigates age-related deterioration of walking economy. PLoS One. 2014 Nov 20;9(11):e113471. doi: 10.1371/journal.pone.0113471. eCollection 2014.
Ortega JD, Farley CT Individual limb work does not explain the greater metabolic cost of walking in elderly adults. J Appl Physiol (1985). 2007 Jun;102(6):2266-73. doi: 10.1152/japplphysiol.00583.2006. Epub 2007 Mar 15.
Panizzolo FA, Green DJ, Lloyd DG, Maiorana AJ, Rubenson J Soleus fascicle length changes are conserved between young and old adults at their preferred walking speed. Gait Posture. 2013 Sep;38(4):764-9. doi: 10.1016/j.gaitpost.2013.03.021. Epub 2013 May 1.
Rall JA Sense and nonsense about the Fenn effect. Am J Physiol. 1982 Jan;242(1):H1-6. doi: 10.1152/ajpheart.1982.242.1.H1.
Rasske K, Thelen DG, Franz JR Variation in the human Achilles tendon moment arm during walking. Comput Methods Biomech Biomed Engin. 2017 Feb;20(2):201-205. doi: 10.1080/10255842.2016.1213818. Epub 2016 Jul 27.
Rubenson J, Pires NJ, Loi HO, Pinniger GJ, Shannon DG On the ascent: the soleus operating length is conserved to the ascending limb of the force-length curve across gait mechanics in humans. J Exp Biol. 2012 Oct 15;215(Pt 20):3539-51. doi: 10.1242/jeb.070466. Epub 2012 Jul 5.
Sawicki GS, Ferris DP Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008 May;211(Pt 9):1402-13. doi: 10.1242/jeb.009241.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.