Clinical Trials Logo

Clinical Trial Summary

Our goal is to study the relationship between intraocular pressure during robotic prostatectomy surgery and visual deficiencies/vision loss after surgery. We believe the risk of vision loss from this surgery to be due to positioning during the operation, as well as abdominal carbon dioxide insufflation. As robotic procedures are gaining in popularity, we should determine whether they are subjecting this patient population, and perhaps more likely the patient with a preoperative diagnosis of glaucoma, to an increased likelihood of postoperative visual disturbance.If our hypothesis that intraocular pressure is increased in these patients is confirmed, future studies will assess therapeutic modalities to maintain the IOP near baseline.


Clinical Trial Description

The frequency of post-operative permanent vision loss has been recently estimated to be 1:61,0001,2 , although the majority of these cases involve surgical trauma to the eye or brain. Prolonged vision loss not attributable to direct trauma has been estimated to occur with a frequency of approximately 1:125,0003 and has been given a broad classification termed ischemic optic neuropathy. This rare but catastrophic outcome has most commonly been associated with operations performed under circumstances in which there may be increased intraocular pressure (IOP), either due to positioning4 or due to insufflation of the abdomen with carbon dioxide (laparoscopy).5

There are two factors predisposing the robotic prostatectomy patient to an increase in IOP: step head-down (Trendelenburg) position and abdominal carbon dioxide (CO2) insufflation. The Trendelenburg position will increase central venous pressure within the thorax, which may reduce the drainage of blood flow from the head, thus increasing IOP. The CO2 insufflation may increase IOP via two mechanisms. First, by increasing intra-abdominal pressure there is a further increase in intrathoracic pressure. Secondly, insufflation the CO2 may increase the carbon dioxide content of the blood, to which the brain reacts by vasodilating and increasing blood volume. Thus while flow into the eye is increased, flow out of the eye is decreased leading to an increase in pressure inside the eye which eventually may reduce the inflow enough to cause retinal or optic nerve ischemia.

Because the pressure within the eye is an important factor in determining the blood flow to the eye, prevention of a dramatic increase in IOP may make patients less vulnerable to peri-operative ischemic optic neuropathy and vision loss. Because permanent vision loss is such a rare event after surgery, this study will measure more subtle (and most likely, temporary) vision changes (subjective blurriness, visual field deficits, decreased acuity), which occur more frequently and are thus a more easily measured outcome.6

As robotic procedures are gaining in popularity, we should determine whether they are subjecting this patient population, and perhaps more likely the patient with a preoperative diagnosis of glaucoma, to an increased likelihood of postoperative visual disturbance. ;


Study Design

Observational Model: Cohort, Time Perspective: Prospective


Related Conditions & MeSH terms


NCT number NCT00369057
Study type Observational
Source Weill Medical College of Cornell University
Contact
Status Completed
Phase Phase 4
Start date February 2006
Completion date February 2008

See also
  Status Clinical Trial Phase
Completed NCT06019806 - Effects of Forward Head Posture Correction on Visual Acuity in Low Level Visually Impaired University Students N/A
Completed NCT04567186 - Evaluation of a Daily Disposable Novel Multifocal Contact Lens in a Hyperopic Population N/A
Completed NCT02568254 - Evaluation of Three Daily Disposable Contact Lenses N/A
Completed NCT01951703 - Senofilcon A Investigational Manufacturing Process N/A
Terminated NCT00637468 - EAGLE - Multicenter Study of the European Assessment Group for Lysis in the Eye Phase 3
Recruiting NCT04632901 - A New Parameter for the Assessment of Distance Visual Capacity: the Critical Visual Acuity (CVA)
Active, not recruiting NCT03747601 - Temporal Interference Brain Stimulation N/A
Completed NCT06131476 - Clinical Investigation of Visual Acuity in Contact Lens Wearers After Instillation of a Lipid- Based Lubricating Eye Drop Phase 1
Recruiting NCT05414565 - Post-Market Study of Alcon Intraocular Lenses
Completed NCT05056870 - Clinical Evaluation of Spherical Soft Contact Lenses, Toric Soft Contact Lenses and Spectacles in Low Astigmats N/A
Completed NCT04615507 - Evaluation of a Daily Disposable Novel Multifocal Contact Lens in a Myopic Population; Part 2 N/A
Completed NCT05099380 - Validation of Senofilcon A With New UV / HEV Filter N/A
Completed NCT03713281 - Evaluation of a Toric Multifocal Contact Lens Manufactured in Etafilcon Material in a Low ADD Hyperopic Population
Completed NCT05582304 - Role of Glare and Spectral Filtering on Contrast Sensitivity: A Pilot Study N/A
Completed NCT03742271 - Evaluation of Senofilcon A With New UV-blocker on a Neophyte Population N/A
Completed NCT04995055 - Evaluation of Multifocal Contact Lens Designs With and Without an HEV Blocker on Visual Function N/A
Completed NCT05554640 - Clinical Performance of Two Daily Disposable Silicone Hydrogel Contact Lenses N/A
Completed NCT01926704 - MTF Image Modifications N/A
Completed NCT04649606 - Dynamic Characterisation of Meibomian Gland Structure
Completed NCT05101252 - Comparison of a Daily Disposable Multifocal Contact Lens to a Marketed Product N/A