Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05145374
Other study ID # 2021-0415
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date July 1, 2022
Est. completion date September 1, 2024

Study information

Verified date July 2023
Source University of Illinois at Chicago
Contact Laurie Quinn, PhD
Phone 3127716497
Email lquinn1@uic.edu
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The objective of this proposal is to demonstrate a viable, functionally integrated multivariable artificial pancreas (mvAP) that will address meal, physical activity (PA) and acute psychological stress (APS) challenges without any manual inputs to better regulate glucose levels of people with diabetes. Acute psychological stress and many other forms of PA besides planned exercise can affect blood glucose levels and cause challenges to maintaining euglycemia for people with type 1 diabetes mellitus (T1DM). Various PA and APS affect the metabolism and sensitivity to insulin in different ways. Hence, their types, intensities and durations, and their individual and concurrent presence must be detected in order to determine the optimal insulin administration. The mvAP approach provides a well-integrated and user-friendly technology with minimal burden on the user and mitigates the effects of unexpected PA and APS inducements. Twenty subjects with type 1 diabetes (ages 18-60) who use insulin pumps enrolled in this study. The study will take place at the UIC-College of Nursing Diabetes and Exercise Laboratory. The protocol will include 1 screening visit and 5 sessions at the laboratory. The primary activities at each meeting will include: (1) screening; (2) measurement of peak exercise capacity; (3) estimation of maximal strength from submaximal strength tests; (4) Trier Social Stress Test; (5) submaximal bouts of aerobic and resistance exercise, and activities of daily living with and without stress (e.g., mental calculations, video games). These activities will be included visit 3, 4 and 5 as appropriate. In addition, subjects will perform activities at home include: housekeeping chores, stationary bike (if available); treadmill (if available); walking; and light weights (if available). Periodically, the research assistant will call the subject during these times and ask them to perform stress-inducing activities while performing the activity. The stress inducing activities will include mental challenges such as a mathematical computation while performing the activity. The subjects will be called at home 3-5 times during the study. The fully automated algorithm will be tested in a home setting, however, the methodology will be developed and approved for testing later in the study.


Description:

The development of an artificial pancreas (AP) has gained considerable progress over the last decade. The goal of AP systems is to develop a device that will provide insulin on demand in response to blood glucose levels in the same manner as the own pancreas. The first generation of AP systems, the hybrid closed-loop AP, collects data from continuous glucose monitoring (CGM) devices and relies on manual user inputs for mitigating the effects of meals and physical activities. The objective of this proposal is to demonstrate a viable, functionally integrated multivariable artificial pancreas (mvAP) that will address meal, physical activity (PA) and acute psychological stress (APS) challenges without any manual inputs to better regulate glucose levels of people with diabetes. Acute psychological stress and many other forms of PA besides planned exercise can affect blood glucose levels and cause challenges to maintaining euglycemia for people with type 1 diabetes mellitus (T1DM). Various PA and APS affect the metabolism and sensitivity to insulin in different ways. Hence, their types, intensities and durations, and their individual and concurrent presence must be detected in order to determine the optimal insulin administration. The mvAP approach provides a well-integrated and user-friendly technology with minimal burden on the user and mitigates the effects of unexpected PA and APS inducements. The objective of this proposal is to demonstrate a viable, functionally integrated mvAP that will address meal, PA and APS challenges without any manual inputs to better regulate glucose levels of people with T1DM. Our hypothesis is that a new generation multivariable AP that incorporates real-time detection and determination of the characteristics of PA and APS and mitigation of their effects by automatic control will be more effective in improving glucose control in people with T1DM. Additionally, this technology will be safer compared to APs based exclusively on CGM data, by reducing the number and duration of hypoglycemic and hyperglycemic events. Such mvAP systems can only be developed by using a sophisticated multivariable approach that uses real-time information from CGMs and physiological variables obtained from wearable devices worn in free-living daily life. It is proposed to build on this framework a fully automated mvAP technology that will mitigate meal, PA and APS challenges, including unexpected and unplanned events. The specific aims of the proposed research are: Aim 1. To develop the mvAP algorithms and modules that identify various types of physical activities, acute psychological stress episodes, their concurrent presence and their characteristics in real time. Aim 2a: To conduct open-loop studies in clinic and in free living to expand the types and intensities of PA and APS inducements, to enrich our database with data collected during activities of daily living (alone or coupled with APS), including unplanned spontaneous PA and APS events. Aim 2b:To extend our multivariable glucose-insulin-physiological variables simulator (mGIPsim) for in silico studies of the mvAP for simulating APS inducements and their effects on glucose levels and physiological variable outputs of the simulator. Aim 3: To conduct clinical experiments with the second generation mvAP in clinical settings and in free living to assess the performance of our fully-automated mvAP in closed-loop operation. At this time, IRB approval for Aim 1, 2a and 2b has been obtained. Aim 3 will be conducted at a later date. The clinical studies will take place at the University of Illinois at Chicago (UIC)-College of Nursing and at the subjects' home. The protocol will include 1 screening visit and 5 sessions at the laboratory. Subjects will wear a CGM and both Empatica and Actigraph wristbands throughout the study. The primary activities at each meeting will include: (1) screening; (2)estimation of maximal exercise capacity from sub-maximal exercise tests (bicycle and treadmill); (3) estimation of maximal strength from sub-maximal strength tests; (4) sub-maximal bouts of aerobic and resistance exercise; (5) use of Socially Evaluated Cold Pressor Test; (6) driving simulation; (7) resistance exercise, and activities of daily living with and without stress (e.g., mental calculations, video games); (8) use of GoPro/Dash Cam during driving (if appropriate) and questionnaires.These activities will be included in visit 3, 4 and 5 as appropriate. In addition, subjects will perform activities at home including: housekeeping chores, stationary bike (if available); treadmill (if available); walking; and light weights (if available) and a sleep monitor (Z-Machine Insight+). Periodically, the research assistant will call the subject during these times and ask them to perform stress-inducing activities while performing the activity. The stress inducing activities will include mental challenges such as a mathematical computation while performing the activity. The subjects will be called at home 3-5 times during the study. The fully automated algorithm will be tested in a home setting. Once the methodology is refined, Institutional Review Board (IRB) approval for the Aim 3 will be obtained.


Recruitment information / eligibility

Status Recruiting
Enrollment 20
Est. completion date September 1, 2024
Est. primary completion date July 15, 2024
Accepts healthy volunteers No
Gender All
Age group 20 Years to 60 Years
Eligibility Inclusion Criteria: Men and Women with T1DM Insulin pump users Exclusion Criteria: - Metabolic instability as evidenced by hospitalizations for diabetes or other diabetes-related complications (e.g., diabetic ketoacidosis and hypoglycemic seizures) within the preceding three months; - Severe macrovascular disease, as evidenced by severe peripheral artery disease; history of myocardial infarction, heart failure, thromboembolic disease, or unstable angina; uncontrolled hypertension; abnormal resting EKG; - Maximal exercise stress test with significant brady/tachy arrhythmia, ectopic beats, bundle branch block, or signs of acute ischemia; - Severe microvascular disease as evidenced by history of vision-threatening proliferative or non-proliferative retinal disease; kidney disease; - Any uncontrolled non-musculoskeletal condition that would limit the subject's ability to participate in the exercise program (e.g., chronic obstructive airways disease); - Musculoskeletal conditions such as neurological or orthopedic conditions affecting lower limb strength and mobility (e.g., stroke; insensitive foot); - Pregnancy; - Documented medical condition or physical impairment that is judged by the health care practitioner to contraindicate exercise.

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
United States University of Illinois Chicago Chicago Illinois

Sponsors (2)

Lead Sponsor Collaborator
University of Illinois at Chicago Illinois Institute of Technology

Country where clinical trial is conducted

United States, 

References & Publications (5)

Brandt R, Park M, Wroblewski K, Quinn L, Tasali E, Cinar A. Sleep quality and glycaemic variability in a real-life setting in adults with type 1 diabetes. Diabetologia. 2021 Oct;64(10):2159-2169. doi: 10.1007/s00125-021-05500-9. Epub 2021 Jun 17. — View Citation

Rashid M, Samadi S, Sevil M, Hajizadeh I, Kolodziej P, Hobbs N, Maloney Z, Brandt R, Feng J, Park M, Quinn L, Cinar A. Simulation Software for Assessment of Nonlinear and Adaptive Multivariable Control Algorithms: Glucose - Insulin Dynamics in Type 1 Diabetes. Comput Chem Eng. 2019 Nov 2;130:106565. doi: 10.1016/j.compchemeng.2019.106565. Epub 2019 Sep 2. — View Citation

Sevil M, Rashid M, Hajizadeh I, Askari MR, Hobbs N, Brandt R, Park M, Quinn L, Cinar A. Discrimination of simultaneous psychological and physical stressors using wristband biosignals. Comput Methods Programs Biomed. 2021 Feb;199:105898. doi: 10.1016/j.cmpb.2020.105898. Epub 2020 Dec 17. — View Citation

Sevil M, Rashid M, Maloney Z, Hajizadeh I, Samadi S, Askari MR, Hobbs N, Brandt R, Park M, Quinn L, Cinar A. Determining Physical Activity Characteristics from Wristband Data for Use in Automated Insulin Delivery Systems. IEEE Sens J. 2020 Nov;20(21):12859-12870. doi: 10.1109/jsen.2020.3000772. Epub 2020 Jun 8. — View Citation

Turksoy K, Hajizadeh I, Hobbs N, Kilkus J, Littlejohn E, Samadi S, Feng J, Sevil M, Lazaro C, Ritthaler J, Hibner B, Devine N, Quinn L, Cinar A. Multivariable Artificial Pancreas for Various Exercise Types and Intensities. Diabetes Technol Ther. 2018 Oct;20(10):662-671. doi: 10.1089/dia.2018.0072. Epub 2018 Sep 6. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Measurement of Glucose Concentration • Glucose concentration (mg/dl) will be measured by: Continuous Glucose Monitor 2 years
See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02855307 - Closed-loop Control of Glucose Levels (Artificial Pancreas) During Postprandial Exercise in Adults With Type 1 Diabetes Phase 2
Completed NCT02750527 - Pediatric Population Screening for Type 1 Diabetes and Familial Hypercholesterolemia in Lower Saxony, Germany