Clinical Trials Logo

Clinical Trial Details — Status: Withdrawn

Administrative data

NCT number NCT02524366
Other study ID # Elliott TC vs ST AUS
Secondary ID
Status Withdrawn
Phase N/A
First received
Last updated
Start date September 2015
Est. completion date November 2017

Study information

Verified date July 2019
Source University of Minnesota - Clinical and Translational Science Institute
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

We propose a randomized non-blinded comparison of standard vs. transcorporal approach for placement of an artificial urinary sphincter in male patients with stress urinary incontinence after radiation and radical prostatectomy for prostate cancer. In the United States, the artificial urinary sphincter (AUS), manufactured by American Medical Systems, is the gold standard surgical treatment for stress urinary incontinence (SUI) in men. The cuff, which is the portion of the device that encircles and occludes the urethra, is typically placed directly around the urethra (i.e., "standard" placement). The cuff can erode into the urethra. Transcorporal placement has been introduced as a method to reduce the risk of erosion. Transcorporal placement involves tunneling the cuff through the erectile bodies so as to protect the dorsal aspect of the urethra. This approach has never been compared to standard placement in a randomized fashion. In our randomized trial, no additional procedures beyond the normal care protocol will be required of the patients. We will conduct the study through our established, IRB-approved multi-institutional network of surgeons. Success will be assessed via objective and subjective methods; complications will be tallied in a standardized fashion. Outcomes will be measured at two years.


Description:

The AUS is the gold standard for treatment of severe SUI, particularly in patients following surgical resection of the prostate for prostate cancer. In fact, severe urinary incontinence can be the most distressing complication following radical prostatectomy and results in a negative impact on quality of life (Haab, Trockman et al. 1997). Placement of an AUS has been shown to result in an improved quality of life in these patients. AUSs are small devices that prevent urinary flow via compression of the urethra, thus mimicking the native urinary sphincter. They have been available, albeit with occasional improvements or changes in design, since the 1970's. When placed in the standard fashion (ST) a small incision is made in the patient's perineum or scrotum and a fluid-filled cuff is placed around the bulbar urethra (the portion of the urethra between the bladder neck and penis). Connected to the cuff with tubing, is a balloon filled with fluid that is placed behind the pubic bone or in the space between the peritoneum and abdominal muscles. A control pump is placed in the scrotum and allows the device to cycle, thus either exerting pressure to close off the urethra or releasing pressure to allow the urethra to open and the patient to void. 73-76% of patients will experience dramatic improvement in incontinence with very minimal leakage (0-1 pads per day) and 88-89% report significant improvement or cure. Two years following implant, 9% of patients will experience a significant decline in the functionality of the device and report severe incontinence. At 5 years, 28% will need to undergo revision of the device (Dalkin, Wessells et al. 2003). Long-term complications associated with the device include urethral erosion in 5% of cases, urethral atrophy, infection, and mechanical failure of the device.

Patients undergoing radical prostatectomy frequently undergo radiation treatment during the course of their illness. Radiation to the pelvic region is responsible for compromising blood flow to the urethra and fibrosis. As a result these patients are at a moderate risk of developing complications and ultimately failure of the device necessitating removal and/or replacement. Factors that put patients in a high-risk category include a history of urethroplasty for urethral stricture, a history of a prior artificial urinary sphincter, and a history of open surgery for bladder neck contractures (scarring at the entrance to the bladder). Patients who develop a complication as listed above, often require a replacement AUS in a different location than the first cuff. This is done more distally in the penis where the urethra is narrower and there is less tissue to fill the cuff. This puts them at a higher risk for further complications. Several authors have recently published their experience with a modification to the standard technique in patients at a high risk for failure (Guralnick, Miller et al. 2002) (Aaronson, Elliott et al. 2008). The modified technique, termed transcorporal placement (TC), has been shown to be beneficial in this subset of patients. In one study, 28% of high-risk patients with ST placement developed erosion or infection, which required explanting the device compared with 13% in the TC group (4). Continence was also better in this high-risk group when TC placement was used, compared with ST, 89% vs 61%. TC placement also reduces the risk of injury to the urethra during surgery. Unlike in ST, TC placement involves placing the device around the urethra but also incorporating a flap of the tough tunica albigunea. The same incision is made as for the ST approach, and then an incision is made in each corpus cavernosum (cylinders of tissue that allow for erection). This allows the cuff to be placed around both the urethra and through the lining of the corporal bodies, increasing the bulk of tissue behind the urethra to protect it from erosion.

It has been suggested that placing the cuff near the erectile tissues might cause erectile dysfunction and as a result few surgeons perform this procedure on potent patients. However, scant data exist to support or refute this hypothetical effect on erectile function. Despite its success in patients at high risk of erosion, the TC approach has never been adequately tested in patients without a high risk of failure. It is unknown if this is a technique that only benefits this subset of patients or whether all patients might experience better long-term continence with less risk for erosion.

Study Objectives

The purpose of this study is to improve long-term patient outcomes and reduce complications and morbidity in patients with male SUI who are candidates for AUS insertion after radiation. The results from this study will provide clinicians evidence for superiority of either the ST or TC AUS. Our null hypothesis is that there is no difference in outcomes (as defined below) for AUS done in a TC vs. ST method. The alternative hypothesis is that one procedure is inferior/superior to the other.

Primary endpoint: AUS revision or removal surgery. These include surgery for mechanical failure, cuff erosion, impending erosion (discretion of surgeon), urethral atrophy, urinary incontinence and persistent retention due to small cuff.

Secondary endpoints:

Rate of post-operative urinary retention. Urinary retention defined as urinary catheter placement for more than 5 days in the period between AUS implantation and AUS activation (typically 4-8 weeks postoperatively) Incontinence at 3 months post-operatively measured using 24-hour pad weight test. Erectile function at 3 months as measured via the Sexual Health Inventory for Men (SHIM) Incontinence and QoL impact at 3 months as measured by the Incontinence Severity Index (ISI) and the Incontinency Impact Questionnaire Short From (IIQ-7)


Recruitment information / eligibility

Status Withdrawn
Enrollment 0
Est. completion date November 2017
Est. primary completion date November 2017
Accepts healthy volunteers No
Gender Male
Age group 18 Years to 85 Years
Eligibility Inclusion Criteria:

- Men undergoing an AUS procedure

- History of pelvic radiation for prostate or other cancer

- No spontaneous erections and no erections with oral erectogenic agents

- Subjects able to consent for themselves

Exclusion Criteria:

- prior urethroplasty

- prior urethral erosion of AUS

- history of penile prosthesis placement or explantation

- concomitant placement of penile prosthesis at the time of AUS placement

Study Design


Intervention

Device:
Artificial Urinary Sphincter


Locations

Country Name City State
United States University of Minnesota Medical Center Minneapolis Minnesota

Sponsors (12)

Lead Sponsor Collaborator
University of Minnesota - Clinical and Translational Science Institute Baylor College of Medicine, Lahey Clinic, Loyola University Chicago, New York University, Ohio State University, University of California, San Diego, University of California, San Francisco, University of Iowa, University of Kansas, University of Utah, University of Washington

Country where clinical trial is conducted

United States, 

References & Publications (5)

Aaronson DS, Elliott SP, McAninch JW. Transcorporal artificial urinary sphincter placement for incontinence in high-risk patients after treatment of prostate cancer. Urology. 2008 Oct;72(4):825-7. doi: 10.1016/j.urology.2008.06.065. Epub 2008 Aug 26. — View Citation

Dalkin BL, Wessells H, Cui H. A national survey of urinary and health related quality of life outcomes in men with an artificial urinary sphincter for post-radical prostatectomy incontinence. J Urol. 2003 Jan;169(1):237-9. — View Citation

Guralnick ML, Miller E, Toh KL, Webster GD. Transcorporal artificial urinary sphincter cuff placement in cases requiring revision for erosion and urethral atrophy. J Urol. 2002 May;167(5):2075-8; discussion 2079. — View Citation

Haab F, Trockman BA, Zimmern PE, Leach GE. Quality of life and continence assessment of the artificial urinary sphincter in men with minimum 3.5 years of followup. J Urol. 1997 Aug;158(2):435-9. — View Citation

Simhan J, Morey AF, Zhao LC, Tausch TJ, Scott JF, Hudak SJ, Mazzarella BC. Decreasing need for artificial urinary sphincter revision surgery by precise cuff sizing in men with spongiosal atrophy. J Urol. 2014 Sep;192(3):798-803. doi: 10.1016/j.juro.2014.03.115. Epub 2014 Apr 16. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary AUS Removal/Revision We will record the incidence of any repeat AUS surgery for mechanical failure, cuff erosion, impending erosion (discretion of surgeon), urethral atrophy, urinary incontinence and persistent retention due to small cuff. 2 years
Secondary Urinary Retention Incidence of post-operative urinary retention defined as having a urethral catheter placed or re-placed any time after 5 days post-operative. 8 weeks
Secondary Incontinence 24 hour pad weight test will be administered at 3 months. 3 months
Secondary Incontinence Quality of Life Incontinence Severity Index and Incontinency Impact Questionnaire Short Form questionnaire will be administered 3 months
Secondary Sexual Function Sexual Health Inventory for Men will be administered 3 months
See also
  Status Clinical Trial Phase
Recruiting NCT04829357 - Post Market Clinical Follow-up Study on TVT ABBREVO® Continence System
Completed NCT05493735 - Lidocaine for Pessary Check Pain Reduction Phase 3
Completed NCT04512053 - A Phase 2 Study of TAS-303 in Female Patients With Stress Urinary Incontinence Phase 2
Active, not recruiting NCT06224335 - Measurement of Intravaginal and Intra-abdominal Pressure and Pad Test During Sports Activities (SPORTVAGPRES)
Recruiting NCT05304312 - The Role of Kegel Exercises Book to Improve Treatment in Stress Urinary Incontinence Women N/A
Not yet recruiting NCT05527665 - Sexual Fonction and Discomfort in Women After Midurethral Sling Surgery, Using PPSSQ
Not yet recruiting NCT04558762 - Ten Years Follow-up After Insertion of a MUS (Mid Urethral Sling) Due to Stress Urinary Incontinence
Completed NCT01924728 - Efficacy of Magnetic Stimulation for Stress Urinary Incontinence N/A
Completed NCT01676662 - Solace European Confirmatory Trial N/A
Unknown status NCT01455779 - Lyrette: Renewing Continence Objective and Subjective Efficacy Study N/A
Terminated NCT01029106 - Gynecare TVT Secur for the Management of Stress Urinary Incontinence (SUI) N/A
Completed NCT01123096 - Is the Cough Stress Test Equivalent to the 24 Hour Pad Test in the Assessment of Stress Incontinence? N/A
Completed NCT01770691 - Preliminary Performance Study of the New TIPI Device in the Prevention of Stress Urinary Incontinence N/A
Withdrawn NCT00573703 - Laparoscopic Burch Colposuspension Versus Transobturatory Tape for the Treatment of Female Urinary Stress Incontinence Phase 4
Completed NCT00234754 - Trans-Obturator Tape Versus Trans-Vaginal Tape for Stress Urinary Incontinence in Women N/A
Completed NCT00441454 - Retropubic vs. Transobturator Tension-free Vaginal Tape N/A
Completed NCT03985345 - Prospective Evaluation of the Connected EMY Biofeedback Probe in the Management of Stress Urinary Incontinence. N/A
Active, not recruiting NCT03671694 - Laser Vaginal Treatment for SUI N/A
Completed NCT04097288 - Effects of Single Dose Citalopram and Reboxetine on Urethral and Anal Closure Function on Healthy Female Subjects Phase 1
Recruiting NCT05272644 - Efficacy of Biofeedback-Assisted Pelvic Muscle Floor Training and Electrical Stimulation on Women With Stress Urinary Incontinence N/A