Clinical Trials Logo

Stage IVA Colon Cancer clinical trials

View clinical trials related to Stage IVA Colon Cancer.

Filter by:

NCT ID: NCT01383343 Completed - Clinical trials for Stage IVA Colon Cancer

Sorafenib Tosylate, Bevacizumab, Irinotecan Hydrochloride, Leucovorin Calcium, and Fluorouracil in Treating Patients With Metastatic Colorectal Cancer

Start date: August 2011
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of sorafenib tosylate when given together with bevacizumab, irinotecan hydrochloride, leucovorin calcium, and fluorouracil in treating patients with colorectal cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as irinotecan hydrochloride, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Sorafenib tosylate and bevacizumab may also block tumor growth in different ways by targeting certain cells. Giving sorafenib tosylate and bevacizumab together with combination chemotherapy may be a better treatment for colorectal cancer.

NCT ID: NCT01365910 Terminated - Clinical trials for Recurrent Rectal Cancer

Linifanib in Treating Patients With Advanced, Refractory Colorectal Cancer

Start date: June 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well Linifanib works in treating patients with advanced, refractory colorectal cancer expressing k-Ras mutations. Linifanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01320683 Terminated - Liver Metastases Clinical Trials

Combination Chemotherapy and Bevacizumab Before Surgery and Radiolabeled Monoclonal Antibody Therapy in Treating Liver Metastases in Patients With Metastatic Colorectal Cancer

Start date: March 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving combination chemotherapy and bevacizumab before surgery and radiolabeled monoclonal antibody therapy works in treating liver metastases in patients with metastatic colorectal cancer. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin (FOLFOX), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiolabeled monoclonal antibodies, such as yttrium Y 90 DOTA anti-CEA monoclonal antibody M5A, can find tumor cells and carry tumor-killing substances to them without harming normal cells. Giving chemotherapy and monoclonal antibody before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving radiolabeled monoclonal antibody therapy after surgery may kill any tumor cells that remain after surgery

NCT ID: NCT01270438 Withdrawn - Clinical trials for Recurrent Rectal Cancer

Combination Chemotherapy and Bevacizumab With or Without RO4929097 in Treating Patients With Metastatic Colorectal Cancer

Start date: December 2010
Phase: Phase 2
Study type: Interventional

This phase II clinical trial is studying how well giving combination chemotherapy and bevacizumab with or without RO4929097 works in treating patients with metastatic colorectal cancer. Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy and bevacizumab is more effective with RO4929097 in treating patients with colorectal cancer.

NCT ID: NCT01217450 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Selumetinib and Cetuximab in Treating Patients With Refractory Solid Tumors

Start date: October 2012
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and the best dose of MEK Inhibitor AZD6244 when given together with cetuximab in patients with advanced or refractory solid tumors that cannot be removed by surgery. MEK inhibitor AZD6244 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving MEK Inhibitor AZD6244 together with cetuximab may kill more tumor cells.

NCT ID: NCT01198535 Terminated - Clinical trials for Stage IVA Colon Cancer

Phase I Study of Cetuximab With RO4929097 in Metastatic Colorectal Cancer

Start date: September 2010
Phase: Phase 1
Study type: Interventional

The purpose of this study is to determine if a new drug, RO4929097, can work with cetuximab, a drug already approved for colorectal cancer, to help fight the patient's cancer. Cancers arise as a result of abnormal control of gene expression. One of the pathways that gets abnormally regulated in some cancers is the Notch pathway. RO4929097 is an investigational drug that blocks the activation of the Notch pathway. It is hoped that by blocking this abnormal activation, this drug may be helpful in patients with cancer but the investigators do not yet know if that is true. Cetuximab is an antibody against epidermal growth factor receptor and is known to have activity in metastatic colorectal cancer. Recent studies have shown that people with colorectal cancers that contain a mutation in a gene called K-ras do not benefit from receiving cetuximab. It is unknown if adding RO4929097 to cetuximab would benefit patients who have tumors with this mutation.

NCT ID: NCT01131234 Completed - Clinical trials for Stage IV Breast Cancer

Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients With Advanced Solid Tumors

Start date: May 2010
Phase: Phase 1
Study type: Interventional

This phase I clinical trial is studying the side effects and best dose of giving gamma-secretase inhibitor RO4929097 and cediranib maleate together in treating patients with advanced solid tumors. Gamma-secretase inhibitor RO4929097 and cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate also may stop the growth of tumor cells by blocking blood flow to the tumor.

NCT ID: NCT00937482 Terminated - Clinical trials for Stage IV Breast Cancer

Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

Start date: August 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of cediranib maleate when given together with whole brain radiation therapy in treating patients with brain metastases from non-small cell lung cancer. Cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays and other types of radiation to kill cancer cells and shrink tumors. Giving cediranib maleate together with radiation therapy may kill more tumor cells

NCT ID: NCT00499369 Terminated - Clinical trials for Recurrent Rectal Cancer

Irinotecan and Cetuximab With or Without Bevacizumab in Treating Patients With Metastatic Colorectal Cancer That Progressed During First-Line Therapy

Start date: June 2007
Phase: Phase 3
Study type: Interventional

This randomized phase III trial is studying giving irinotecan and cetuximab together with bevacizumab to see how well it works compared with giving irinotecan and cetuximab alone in treating patients with metastatic colorectal cancer that progressed during first-line therapy. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab and bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether irinotecan and cetuximab are more effective with or without bevacizumab in treating metastatic colorectal cancer.

NCT ID: NCT00103311 Completed - Clinical trials for Recurrent Rectal Cancer

SB-715992 in Treating Patients With Advanced or Metastatic Colorectal Cancer

Start date: January 2005
Phase: Phase 2
Study type: Interventional

This randomized phase II trial is studying how well SB-715992 works in treating patients with advanced or metastatic colorectal cancer. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.