Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01539109
Other study ID # 16-334
Secondary ID RPC 2016-195
Status Completed
Phase N/A
First received
Last updated
Start date November 2011
Est. completion date October 2019

Study information

Verified date July 2020
Source The Cleveland Clinic
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to investigate whether combining a noninvasive method of brain stimulation, called Transcranial Direct Current Stimulation (tDCS), enhances the effect of training of the affected upper limbs in patients with incomplete Spinal Cord Injury.


Description:

The long-term objective of this study is to optimize the rehabilitative potential in spinal cord injury (SCI) by maximally harnessing the potential available for functional neural plasticity. SCI is an important cause of serious, long-term disability in young adults. This fact, further complicated by rising disability-related costs, makes SCI a significant economic and social burden. Upper limb dysfunction is one of the most prevalent and debilitating impairments. More than 75% of patients with quadriplegia (paralysis of all 4 limbs following spinal cord injury in neck and upper back) prioritize return of upper limb function over any other lost function. Alleviating deficits of the upper limb may represent a cost-effective stategy to reducing the burden of SCI.

Although various exercise programs and neuromuscular stimulation methods have been employed to mitigate functional impairments of the arm and hand, success of these modalities is still debated. Evidence for efficacy of rehabilitation is inconclusive as outcomes are variable, confounded by methodological issues, and have shown poor generalizability. It is now speculated that limited succcess of rehabilitation emerges from inability of current methods to adequately harness the potential for significant neuroplasticity available in SCI.

Even though the site of damage in SCI does not involve the brain, the neural networks in the brain that control movement of the arm and hand are markedly affected. These regions lose their territory that the investigators argue could hamper effects of upper limb therapy. The Investigators objective is to directly modulate adaptive plasticity in these regions of the brain to enhance function of the upper limb in iSCI. The Investigators central hypothesis is that noninvasive brain stimulation, called transcranial direct current stimulation (tDCS), when delivered concurrently with rehabilitation will generate synergistic functional advantage. Adaptive plasticty would be obeserved as changes in structure of pathways emerging from the brain and the individual's function.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date October 2019
Est. primary completion date October 2019
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 75 Years
Eligibility Inclusion Criteria:

- Diagnosed with incomplete spinal cord injury (iSCI) that occurred at least 6 months ago

Exclusion Criteria:

- History of epilepsy in a first degree relative

- Use of anticonvulsants

- Pregnant

- Implanted pumps, shunts, or neurostimulators

- Neurologic condition affecting sensorimotor systems

- Brain tumor

- Dementia

- Substance abuse

- Stroke

- Damaged skin on the scalp

- Concurrent upper limb rehabilitation

Study Design


Intervention

Behavioral:
Rehabilitation
Patients will receive training upon tasks of daily living. Patients will perform these exercises in our laboratory under the supervision of qualified personnel.
Procedure:
Noninvasive brain stimulation: tDCS
TDCS is a method of noninvasive stimulation of the brain. Using electrodes placed in saline-soaked sponges, low level of direct current (2mA) is delivered over the scalp. This intervention is considered safe and noninvasive because it does not involve implantation or injection or any skin penetration. In the present study, tDCS will be delivered to patients in the experimental group for 2 hr each day for 5 days a week for 2 weeks in conjunction with therapy for the affected hand.
Sham tDCS: placebo noninvasive brain stimulation
Placebo set-up for noninvasive brain stimulation will be similar to that for the active tDCS; sponge electrodes would be placed on the scalp and connected to a batter-operated device. Patients will not receive the effective level of direct current as would delivered in active tDCS intervention. But patients will not be able to decipher whether they are receiving active or placebo tDCS.

Locations

Country Name City State
United States The Cleveland Clinic Cleveland Ohio

Sponsors (2)

Lead Sponsor Collaborator
The Cleveland Clinic Telemedicine & Advanced Technology Research Center

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in Upper Limb Function from Baseline Upper limb function will be measured by the Upper Extremity Motor Score (UEMS), capacity tasks in the form of the Grasp and Release Task (GRT) test, and pinch grip impariment that will be measured by a maximum voluntary isometric pinch force. Strength, activities and impairments will be measured at The patient will receive TMS during at baseline, post-2 weeks, post-4 weeks and 3-month followup
Secondary Magnetic Resonance Imaging (MRI) of the brain MRI will be used to measure changes in structure of the brain and its pathways as a result of training The patient will receive MRI during at baseline, post-2 weeks, and post-4 weeks
Secondary Physiology of Brain studied with Noninvasive Brain Stimulation using Transcranial Magnetic Stimulation (TMS) TMS is a noninvasive technique of brain stimulation that examines the activity of regions of brain devoted to movement. Without implanting, or injecting or penetrating the brain, simply by using scalp-based recordings, TMS can assess functionality of the brain. The patient will receive TMS during at baseline, post-2 weeks, and post-4 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT02574572 - Autologous Mesenchymal Stem Cells Transplantation in Cervical Chronic and Complete Spinal Cord Injury Phase 1
Recruiting NCT05941819 - ARC Therapy to Restore Hemodynamic Stability and Trunk Control in People With Spinal Cord Injury N/A
Completed NCT05265377 - Safety and Usability of the STELO Exoskeleton in People With Acquired Brain Injury and Spinal Cord Injury N/A
Recruiting NCT02331979 - Improving Bladder Function in SCI by Neuromodulation N/A
Completed NCT02777281 - Safe and Effective Shoulder Exercise Training in Manual Wheelchair Users With SCI N/A
Recruiting NCT02978638 - Electrical Stimulation for Continence After Spinal Cord Injury N/A
Completed NCT02262234 - Education Interventions for Self-Management of Pain Post-SCI: A Pilot Study Phase 1/Phase 2
Completed NCT02161913 - Comparison of Two Psycho-educational Family Group Interventions for Persons With SCI and Their Caregivers N/A
Withdrawn NCT02237547 - Safety and Feasibility Study of Cell Therapy in Treatment of Spinal Cord Injury Phase 1/Phase 2
Completed NCT01884662 - Virtual Walking for Neuropathic Pain in Spinal Cord Injury N/A
Completed NCT01642901 - Zoledronic Acid in Acute Spinal Cord Injury Phase 3
Terminated NCT02080039 - Electrical Stimulation of Denervated Muscles After Spinal Cord Injury N/A
Terminated NCT01433159 - Comparison of HP011-101 to Standard Care for Stage I-II Pressure Ulcers in Subjects With Spinal Cord Injury Phase 2
Completed NCT01471613 - Lithium, Cord Blood Cells and the Combination in the Treatment of Acute & Sub-acute Spinal Cord Injury Phase 1/Phase 2
Completed NCT01467817 - Obesity/Overweight in Persons With Early and Chronic Spinal Cord Injury (SCI) N/A
Completed NCT02149511 - Longitudinal Morphometric Changes Following SCI
Completed NCT01025609 - Dietary Patterns and Cardiovascular (CVD) Risk in Spinal Cord Injury (SCI) Factors In Individuals With Chronic Spinal Cord Injury
Completed NCT01086930 - Early Intensive Hand Rehabilitation After Spinal Cord Injury Phase 3
Completed NCT00663663 - Telephone Intervention for Pain Study (TIPS) N/A
Terminated NCT01005615 - Patterned Functional Electrical Stimulation (FES) Ergometry of Arm and Shoulder in Individuals With Spinal Cord Injury Phase 1/Phase 2