Spinal Cord Injuries Clinical Trial
— BoxSwitchOfficial title:
Study on Preliminary Safety and Efficacy of the ARC Therapy Using the ARC-IM Lumbar System to Support Mobility in People With Chronic Spinal Cord Injury
The purpose of this pre-market clinical study is to assess the preliminary safety and efficacy of the ARC Therapy using the ARC-IM Lumbar System at supporting mobility in participants with chronic spinal cord injury. Only participants that have undergone the STIMO study (NCT02936453) will be proposed to exchange their currently implanted system with components of the newly developed ARC-IM Lumbar system. The goal is to improve more effective lower-limb motor activities, while also simplifying the personal at-home use of the system. In addition, this study aims to evaluate the potential effect of ARC Therapy on muscle tone, bladder, bowel and sexual functions, and quality of life of the participants. Preliminary safety and efficacy will be assessed in both the short term and throughout the duration of the study (from the surgery to 36 months after the implantation of the ARC-IM Lumbar system).
Status | Not yet recruiting |
Enrollment | 8 |
Est. completion date | August 2027 |
Est. primary completion date | August 2027 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: 1. Having completed the main phase of the STIMO study (NCT02936453) and having improved on at least one of the primary or secondary endpoints (WISCI II Score, 10-Meter Walk test, Weight Bearing Capacity, SCIM III Score or 6-Minute Walk test). 2. Age 18-65 3. SCI graded as American Spinal Injury Association Impairment Scale (AIS) A, B, C & D 4. SCI = 12months 5. SCI lesion level T10 and above with preservation of conus function 6. SCI due to trauma 7. Stable medical, physical and psychological condition as considered by the investigators 8. Able to understand and interact with the study team in French or English 9. Agrees to comply in good faith with all conditions of the study and to attend all scheduled appointments 10. Must provide and sign the Informed Consent prior to any study-related procedures Exclusion Criteria: 1. Diseases and conditions that would increase the morbidity and mortality of spinal cord injury surgery 2. History of myocardial infarction or cerebrovascular event within the past 6 months 3. Limitation of walking function based on accompanying (CNS) disorders (systemic malignant disorders, cardiovascular disorders restricting physical training, peripheral nerve disorders) 4. Any active implanted cardiac device such as pacemaker or defibrillator 5. Any indication that would require diathermy 6. Any indication that would require MRI 7. Any anatomical limitations in the implantation area as judged by the investigators 8. Other conditions that would make the subject unable to participate in testing in the judgement of the investigators 9. Clinically significant mental illness in the judgement of the investigators 10. Presence of indwelling baclofen or insulin pump 11. Other clinically significant concomitant disease states (e.g., renal failure, hepatic dysfunction, cardiovascular disease, etc.) 12. Inability to follow the procedures of the study, e.g. due to language problems, psychological disorders, or dementia of the participant 13. Enrolment of the investigator, his/her family members, employees, and other dependent persons |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
Ecole Polytechnique Fédérale de Lausanne |
Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004 Oct;21(10):1371-83. doi: 10.1089/neu.2004.21.1371. — View Citation
Asboth L, Friedli L, Beauparlant J, Martinez-Gonzalez C, Anil S, Rey E, Baud L, Pidpruzhnykova G, Anderson MA, Shkorbatova P, Batti L, Pages S, Kreider J, Schneider BL, Barraud Q, Courtine G. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci. 2018 Apr;21(4):576-588. doi: 10.1038/s41593-018-0093-5. Epub 2018 Mar 19. — View Citation
Brinkhof MW, Al-Khodairy A, Eriks-Hoogland I, Fekete C, Hinrichs T, Hund-Georgiadis M, Meier S, Scheel-Sailer A, Schubert M, Reinhardt JD; SwiSCI Study Group. Health conditions in people with spinal cord injury: Contemporary evidence from a population-based community survey in Switzerland. J Rehabil Med. 2016 Feb;48(2):197-209. doi: 10.2340/16501977-2039. — View Citation
Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci. 2013 Dec 4;33(49):19326-40. doi: 10.1523/JNEUROSCI.1688-13.2013. — View Citation
Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006 Jun;44(6):341-51. doi: 10.1038/sj.sc.3101855. Epub 2005 Nov 22. — View Citation
Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013 Aug 20;81(8):723-8. doi: 10.1212/WNL.0b013e3182a1aa68. Epub 2013 Jul 24. — View Citation
Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, Bloch J, Micera S, Capogrosso M, Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018 Dec;21(12):1728-1741. doi: 10.1038/s41593-018-0262-6. Epub 2018 Oct 31. — View Citation
Gill M, Linde M, Fautsch K, Hale R, Lopez C, Veith D, Calvert J, Beck L, Garlanger K, Edgerton R, Sayenko D, Lavrov I, Thoreson A, Grahn P, Zhao K. Epidural Electrical Stimulation of the Lumbosacral Spinal Cord Improves Trunk Stability During Seated Reaching in Two Humans With Severe Thoracic Spinal Cord Injury. Front Syst Neurosci. 2020 Nov 19;14:79. doi: 10.3389/fnsys.2020.569337. eCollection 2020. — View Citation
Greiner N, Barra B, Schiavone G, Lorach H, James N, Conti S, Kaeser M, Fallegger F, Borgognon S, Lacour S, Bloch J, Courtine G, Capogrosso M. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun. 2021 Jan 19;12(1):435. doi: 10.1038/s41467-020-20703-1. — View Citation
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL, Lambert GM, Arauzo-Bravo MJ, Lee J, Fishman M, Robbins GE, Lin X, Venepally P, Badger JH, Galbraith DW, Gage FH, Lasken RS. RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19802-7. doi: 10.1073/pnas.1319700110. Epub 2013 Nov 18. — View Citation
Kathe C, Skinnider MA, Hutson TH, Regazzi N, Gautier M, Demesmaeker R, Komi S, Ceto S, James ND, Cho N, Baud L, Galan K, Matson KJE, Rowald A, Kim K, Wang R, Minassian K, Prior JO, Asboth L, Barraud Q, Lacour SP, Levine AJ, Wagner F, Bloch J, Squair JW, Courtine G. The neurons that restore walking after paralysis. Nature. 2022 Nov;611(7936):540-547. doi: 10.1038/s41586-022-05385-7. Epub 2022 Nov 9. — View Citation
Krassioukov A, Eng JJ, Warburton DE, Teasell R; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009 May;90(5):876-85. doi: 10.1016/j.apmr.2009.01.009. — View Citation
Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016 Jun 24;352(6293):1586-90. doi: 10.1126/science.aaf1204. — View Citation
Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A, Fagegaltier D, Andrusivova Z, Saarenpaa S, Saiz-Castro G, Cuevas M, Watters A, Lundeberg J, Bonneau R, Phatnani H. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019 Apr 5;364(6435):89-93. doi: 10.1126/science.aav9776. — View Citation
Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):eaah3621. doi: 10.1126/scitranslmed.aah3621. — View Citation
Minassian K, Hofstoetter U, Tansey K, Mayr W. Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg. 2012 Jun;114(5):489-97. doi: 10.1016/j.clineuro.2012.03.013. Epub 2012 Mar 29. — View Citation
Moraud EM, Capogrosso M, Formento E, Wenger N, DiGiovanna J, Courtine G, Micera S. Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron. 2016 Feb 17;89(4):814-28. doi: 10.1016/j.neuron.2016.01.009. Epub 2016 Feb 4. — View Citation
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012 Oct 10;29(15):2431-45. doi: 10.1089/neu.2012.2507. Epub 2012 Sep 20. — View Citation
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma. 2015 Dec 15;32(24):1927-42. doi: 10.1089/neu.2015.3903. Epub 2015 Sep 1. — View Citation
Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro H, Cassara A, Becce F, Lloyd B, Newton T, Ravier J, Kinany N, D'Ercole M, Paley A, Hankov N, Varescon C, McCracken L, Vat M, Caban M, Watrin A, Jacquet C, Bole-Feysot L, Harte C, Lorach H, Galvez A, Tschopp M, Herrmann N, Wacker M, Geernaert L, Fodor I, Radevich V, Van Den Keybus K, Eberle G, Pralong E, Roulet M, Ledoux JB, Fornari E, Mandija S, Mattera L, Martuzzi R, Nazarian B, Benkler S, Callegari S, Greiner N, Fuhrer B, Froeling M, Buse N, Denison T, Buschman R, Wende C, Ganty D, Bakker J, Delattre V, Lambert H, Minassian K, van den Berg CAT, Kavounoudias A, Micera S, Van De Ville D, Barraud Q, Kurt E, Kuster N, Neufeld E, Capogrosso M, Asboth L, Wagner FB, Bloch J, Courtine G. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022 Feb;28(2):260-271. doi: 10.1038/s41591-021-01663-5. Epub 2022 Feb 7. — View Citation
Skinnider MA, Squair JW, Kathe C, Anderson MA, Gautier M, Matson KJE, Milano M, Hutson TH, Barraud Q, Phillips AA, Foster LJ, La Manno G, Levine AJ, Courtine G. Cell type prioritization in single-cell data. Nat Biotechnol. 2021 Jan;39(1):30-34. doi: 10.1038/s41587-020-0605-1. Epub 2020 Jul 20. — View Citation
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, Hudelle R, Qaiser T, Matson KJE, Barraud Q, Levine AJ, La Manno G, Skinnider MA, Courtine G. Confronting false discoveries in single-cell differential expression. Nat Commun. 2021 Sep 28;12(1):5692. doi: 10.1038/s41467-021-25960-2. — View Citation
Squair JW, Skinnider MA, Gautier M, Foster LJ, Courtine G. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nat Protoc. 2021 Aug;16(8):3836-3873. doi: 10.1038/s41596-021-00561-x. Epub 2021 Jun 25. — View Citation
Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg A, Ponten F, Costea PI, Sahlen P, Mulder J, Bergmann O, Lundeberg J, Frisen J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016 Jul 1;353(6294):78-82. doi: 10.1126/science.aaf2403. — View Citation
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018 Nov;563(7729):65-71. doi: 10.1038/s41586-018-0649-2. Epub 2018 Oct 31. — View Citation
West CR, Phillips AA, Squair JW, Williams AM, Walter M, Lam T, Krassioukov AV. Association of Epidural Stimulation With Cardiovascular Function in an Individual With Spinal Cord Injury. JAMA Neurol. 2018 May 1;75(5):630-632. doi: 10.1001/jamaneurol.2017.5055. Erratum In: JAMA Neurol. 2018 Dec 1;75(12):1575. — View Citation
* Note: There are 26 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Preliminary safety of the ARC Therapy | Occurrence of Serious Adverse Events and Adverse Events that are deemed related or possibly related to the study procedure or to the ARC-IM system. | Through study completion (expected 3 years) | |
Secondary | 10 Meters Walk test (m/s) | The 10 Meters Walk Test is a performance measure used to assess walking speed in meters per second over a short distance. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | 6 Minutes Walk test (meters) | The 6 minutes walk test is a performance measureused to assess aerobic capacity and endurance. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | International Standards For Neurological Classification of Spinal Injury (ISNCSCI) | A neurological assessment and classification of a spinal cord injury | Baseline, 12 months, 24 months and 36 months | |
Secondary | Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI) | The SCI-FAI assesses functional walking ability in ambulatory individuals with SCI. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | Neuromuscular Recovery Scale (NRS) | The NRS is used to measure quality of movement without compensatory movement patterns using a body weight support system and a treadmill. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | Walking Index for Spinal Cord Injury (WISCI II) | The Walking Index for Spinal Cord Injury (WISCI) is a scale that measures the type and amount of assistance (in terms of requirements of assistive devices, or human helpers) required by a person with spinal cord injury (SCI) for walking. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | Modified Ashworth Scale (MAS) | The modified Ashworth scale a universally accepted clinical tool used to measure the increase of muscle tone. | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | Spinal Cord Independence Measure (SCIM III) | The SCIM address specific areas of function in patients with spinal cord injuries (SCI). | Baseline, Short-term (up to 6months), 12 months, 24 months and 36 months | |
Secondary | Quality of Life questionnaires | Questionnaires addressing bowel, bladder and sexual functions. | Monthly during the first year |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |