Clinical Trials Logo

Clinical Trial Summary

The aim of this pilot study is to explore how body composition, circulating markers of metabolic health and skin integrity in persons with a spinal cord injury (SCI) are affected by 12 weeks of quadriceps neuromuscular electrical stimulation (NMES) resistance training. The novel element of this study is that one group will be given additional daily protein supplementation in addition to the NMES training (treatment group), whereas the other group will only perform the NMES training (control group). The investigators hypothesise that NMES in combination with protein results in larger improvements in the aforementioned outcomes compared with NMES alone.


Clinical Trial Description

A spinal cord injury (SCI) is a debilitating condition, with paralysis below the lesion level as one of the main hallmarks. As a result of paralysis, together with decreased levels of physical activity and impairment-specific co-morbidities such as autonomic dysfunction, persons with SCI have a markedly reduced muscle mass. Being the major site for glucose disposal, skeletal muscle is key for the maintenance of metabolic health, while it also helps with weight management by contributing to energy expenditure at rest. As such, effective strategies to restore muscle mass in persons with SCI are warranted and can have a significant impact on metabolic health and chronic disease risk in this population. While resistance training is widely recognised as an effective intervention to increase muscle mass in able-bodied individuals, paralysis in the lower limbs of persons with SCI precludes the use of traditional resistance training in this population. NMES has been developed to overcome this barrier and allows persons with SCI to engage in resistance exercise. Notwithstanding the evidence supporting the use of NMES on its own, combined interventions may further enhance its potential to improve health and physical function. Indeed, in the more widely studied population of older adults, that is also at risk for sarcopenia (loss of skeletal muscle mass and strength), increasing daily protein intake enhances the efficacy of resistance training to increase muscle mass. The primary objective of this study is to determine the impact of a 12-week intervention of NMES in combination with protein supplementation when compared with NMES alone on fat free mass in the legs. Secondary objectives are to investigate the impact of the intervention on 1) markers of cardiometabolic health, namely glucose tolerance and fasting plasma lipid concentrations, 2) resting metabolic rate, and 3) skin blood flow at the level of the sacrum in response to experimental pressure. Outcomes related to tertiary objectives include perceived quality of life, neuropathic pain, body image, sleep quality and spasms; as well as free-living energy balance, physical activity and feasibility outcomes related to recruitment, adherence and participant' experiences with the intervention. It is hypothesised that NMES in combination with protein results in larger improvements in the aforementioned outcomes compared with NMES alone. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05249985
Study type Interventional
Source Loughborough University
Contact
Status Completed
Phase N/A
Start date April 5, 2022
Completion date February 15, 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A