Clinical Trials Logo

Clinical Trial Summary

Spinal cord injury (SCI) is a devastating health problem for tens of thousands of military personnel, Veterans and civilians annually. Many persons with SCI must use a wheelchair for their entire life. A new scientific breakthrough called "lumbosacral epidural stimulation" or "ES" can help people with SCI to stand, step and even walk again. At present, for ES to work, people must train with a specialized treadmill that requires several other qualified personnel to train them, which makes it hard for many people with SCI to benefit from this technology. On the other hand, there are wearable "robot suits" that can be used with ES, which would make it easier to use. Our research team has already used this "ES Robot Suit" for 3 months in one person with tetraplegia and showed remarkable improvements in motor control. Furthermore, the investigators are aiming to enhance overground motor recovery by adding 6 months of resistance training (RT). The addition of RT will likely to enhance muscle quality as indicated by increasing lean mass, peak torque and increase sensory flux to the central nervous system. Other additional benefits may include improvement in cardiovascular profile and bladder functions. The specific objectives of the current proposal are to compare the impact of EAW+ES following improving lower extremity muscle quality compared to those who will only undergo EAW+ ES without conducting RT on motor recovery, cardio-metabolic health and bladder control in persons with complete SCI. At the conclusion of the current proposal, the work will be readily available for translation into clinical setting to serve Veterans and Civilian survivors with SCI.


Clinical Trial Description

Spinal cord epidural stimulation (ES) is a neuromodulation modality that can facilitate standing, stepping and walking with and without assistive devices in individuals with SCI, however; ES must be accompanied with locomotor training that at present requires a labor-intensive commitment from multiple well-trained personnel using specialized treadmill equipment. Exoskeletal assisted walking (EAW) on the other hand can be safely and efficiently used for ambulation after SCI in combination with ES without the use of other specialized equipment and multiple personnel. The investigators demonstrated that 12-weeks of EAW+ ES resulted in volitional stepping, with improved temporal and rhythmic electromyography (EMG) patterns and speed and with a reduction in EAW assistance to 35%. Unfortunately, EAW+ES does not appear to effectively restore lean mass below the level of injury, which impacts proprioceptive feedback to the spinal locomotor centers. Thus, in addition the investigators have demonstrated that 16-weeks of electrically-evoked resistance training (RT) resulted in robust muscle hypertrophy of the paralyzed knee and hip extensor muscle groups. Therefore, this proposal leverages these research programs by addressing two major gaps; 1) the use of combination EAW+ES as an activity-dependent plasticity tool for restoration of over ground locomotion and 2) enhancement of muscle quality using RT to provide afferent leverage for neuromodulation techniques. Specific Aims: 1. To determine the impact of 12 months of EAW+ES+RT on 10-meter over ground walking-speed, number of EAW unassisted steps and EMG patterning compared to 12-months of EAW+ delayed-ES +no-RT (control group). 2. To determine the impact of 12-months of EAW+ES+RT on blood pressure, total and regional body composition, oxygen uptake as well as anabolic and inflammatory biomarkers compared to the control group. 3. To determine the impact of 12-months of EAW+ES+RT on parameters of bladder filling and emptying as measured by urodynamic studies compared to the control group. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04782947
Study type Interventional
Source United States Department of Defense
Contact Ashraf S Gorgey, PhD
Phone 804675500
Email ashraf.gorgey@va.gov
Status Recruiting
Phase Phase 2/Phase 3
Start date February 3, 2021
Completion date August 31, 2025

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A