Spinal Cord Injuries Clinical Trial
Official title:
The Feasibility and Effects of Low-load Blood-flow Restricted Exercise Following Spinal Cord Injury
NCT number | NCT03690700 |
Other study ID # | BFRE_SCI |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | May 1, 2020 |
Est. completion date | October 31, 2024 |
Spinal cord injury (SCI): The World Health Organization estimates an incidence of 250,000 to 500,000 per year worldwide. In Denmark 130 new cases of SCI per year. SCI is a devastating condition: paresis/paralysis of the skeletal muscles below the injury site, partial or complete inability to walk, move and/or feel. Other sequelae are: infections, lifestyle diseases (cardiovascular, diabetes, nephrologic disease), mental wellbeing/suicide-risk profoundly raised , quality of life, next-of-kin affection. Recovery of motor function is high clinical priority and crucial for improved ADL outcomes. Strength training regimens have shown improved muscle strength in healthy subjects using near-maximal voluntary effort contractions, and few studies have demonstrated similar effects in a SCI population. Atrophy and fatigability and spasticity may reduce practical implementation for rehabilitation. Therefore, low-load blood-flow restricted exercise (BFRE) may prove beneficial as supplement to traditional rehabilitation, increasing muscle strength and inducing hypertrophy in healthy persons. BFRE is performed as low-intensity strength training (20-30 % of max) while simultaneously involving the use of circumferential placement of cuffs during exercise, to maintain arterial inflow to the muscle while preventing venous return. Based on existing scientific evidence, BFRE is acknowledged as a safe regime without serious side effects. Previously, the method has shown increased muscle strength and inducing skeletal muscle hypertrophy in addition to improvement in gait performance in individuals with various diseases causing reduced mobility. Purposes of this PhD project: to investigate the feasibility and effects of BFRE in individuals living with the consequences of SCI.
Status | Recruiting |
Enrollment | 28 |
Est. completion date | October 31, 2024 |
Est. primary completion date | February 28, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 100 Years |
Eligibility | Inclusion Criteria: - Duration of SCI > 1 year, - 18 years of age or older - Exhibit a grade 2, 3 or 4 muscle function of the knee flexors and/or extensors - Classification of grades A, B, C or D on the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) scale - Cognitive ability to follow instructions Exclusion Criteria: - Substance abuse - Severe mental illness - Uncontrolled hypertension - Severe arteriosclerosis, coronary arterial disease - History of severe autonomic dysreflexia - Deep venous thrombosis (or severe coagulation dysfunction) - Collagen diseases such as Ehlers-Danlos Syndrome and Marfan's Syndrome - Severe neuropathies |
Country | Name | City | State |
---|---|---|---|
Denmark | The Spinal Cord Injury Centre of Western Denmark | Viborg |
Lead Sponsor | Collaborator |
---|---|
Spinal Cord Injury Centre of Western Denmark | Aarhus University Hospital, University of Southern Denmark |
Denmark,
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002 Oct;93(4):1318-26. doi: 10.1152/japplphysiol.00283.2002. — View Citation
Ansari NN, Naghdi S, Arab TK, Jalaie S. The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation. 2008;23(3):231-7. — View Citation
Cook SB, LaRoche DP, Villa MR, Barile H, Manini TM. Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp Gerontol. 2017 Dec 1;99:138-145. doi: 10.1016/j.exger.2017.10.004. Epub 2017 Oct 5. — View Citation
Ferraz RB, Gualano B, Rodrigues R, Kurimori CO, Fuller R, Lima FR, DE Sa-Pinto AL, Roschel H. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med Sci Sports Exerc. 2018 May;50(5):897-905. doi: 10.1249/MSS.0000000000001530. — View Citation
Gorgey AS, Timmons MK, Dolbow DR, Bengel J, Fugate-Laus KC, Michener LA, Gater DR. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016 Jun;116(6):1231-44. doi: 10.1007/s00421-016-3385-z. Epub 2016 May 7. — View Citation
Gorgey AS, Timmons MK, Michener LA, Ericksen JJ, Gater DR. Intra-rater reliability of ultrasound imaging of wrist extensor muscles in patients with tetraplegia. PM R. 2014 Feb;6(2):127-33. doi: 10.1016/j.pmrj.2013.08.607. Epub 2013 Sep 13. — View Citation
Gregory CM, Bowden MG, Jayaraman A, Shah P, Behrman A, Kautz SA, Vandenborne K. Resistance training and locomotor recovery after incomplete spinal cord injury: a case series. Spinal Cord. 2007 Jul;45(7):522-30. doi: 10.1038/sj.sc.3102002. Epub 2007 Jan 16. — View Citation
Harvey LA, Fornusek C, Bowden JL, Pontifex N, Glinsky J, Middleton JW, Gandevia SC, Davis GM. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: a randomized controlled trial. Spinal Cord. 2010 Jul;48(7):570-5. doi: 10.1038/sc.2009.191. Epub 2010 Jan 12. — View Citation
Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergstrom EM, Bluvshtein V, Ronen J, Catz A. The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil. 2007 Dec 30;29(24):1926-33. doi: 10.1080/09638280601046302. Epub 2007 Mar 5. — View Citation
Jorgensen AN, Aagaard P, Nielsen JL, Frandsen U, Diederichsen LP. Effects of blood-flow-restricted resistance training on muscle function in a 74-year-old male with sporadic inclusion body myositis: a case report. Clin Physiol Funct Imaging. 2016 Nov;36(6):504-509. doi: 10.1111/cpf.12259. Epub 2015 Jun 19. — View Citation
Kalsi-Ryan S, Beaton D, Curt A, Duff S, Popovic MR, Rudhe C, Fehlings MG, Verrier MC. The Graded Redefined Assessment of Strength Sensibility and Prehension: reliability and validity. J Neurotrauma. 2012 Mar 20;29(5):905-14. doi: 10.1089/neu.2010.1504. Epub 2011 Aug 12. — View Citation
Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med. 2011 Nov;34(6):547-54. doi: 10.1179/107902611X13186000420242. — View Citation
Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015 Sep;58(4):208-213. doi: 10.1016/j.rehab.2015.05.005. Epub 2015 Aug 28. — View Citation
Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol. 2012 May;112(5):1849-59. doi: 10.1007/s00421-011-2167-x. Epub 2011 Sep 16. — View Citation
Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011 Aug;21(4):510-8. doi: 10.1111/j.1600-0838.2010.01290.x. Epub 2011 Mar 16. — View Citation
Maxwell L, Santesso N, Tugwell PS, Wells GA, Judd M, Buchbinder R. Method guidelines for Cochrane Musculoskeletal Group systematic reviews. J Rheumatol. 2006 Nov;33(11):2304-11. — View Citation
Pelletier CA, Hicks AL. Muscle fatigue characteristics in paralyzed muscle after spinal cord injury. Spinal Cord. 2011 Jan;49(1):125-30. doi: 10.1038/sc.2010.62. Epub 2010 Jun 8. — View Citation
Phadke CP, Robertson CT, Condliffe EG, Patten C. Upper-extremity H-reflex measurement post-stroke: reliability and inter-limb differences. Clin Neurophysiol. 2012 Aug;123(8):1606-15. doi: 10.1016/j.clinph.2011.12.012. Epub 2012 Jan 23. — View Citation
Reed R, Mehra M, Kirshblum S, Maier D, Lammertse D, Blight A, Rupp R, Jones L, Abel R, Weidner N; EMSCI Study Group; SCOPE; Curt A, Steeves J. Spinal cord ability ruler: an interval scale to measure volitional performance after spinal cord injury. Spinal Cord. 2017 Aug;55(8):730-738. doi: 10.1038/sc.2017.1. Epub 2017 Mar 21. — View Citation
Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport. 2016 Aug;19(8):669-75. doi: 10.1016/j.jsams.2015.09.005. Epub 2015 Sep 28. — View Citation
Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011 May;3(5):472-9. doi: 10.1016/j.pmrj.2010.10.025. — View Citation
Stavres J, Singer TJ, Brochetti A, Kilbane MJ, Brose SW, McDaniel J. The Feasibility of Blood Flow Restriction Exercise in Patients With Incomplete Spinal Cord Injury. PM R. 2018 Dec;10(12):1368-1379. doi: 10.1016/j.pmrj.2018.05.013. Epub 2018 May 23. — View Citation
Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000 Jun;88(6):2097-106. doi: 10.1152/jappl.2000.88.6.2097. — View Citation
Whitehurst DG, Engel L, Bryan S. Short Form health surveys and related variants in spinal cord injury research: a systematic review. J Spinal Cord Med. 2014 Mar;37(2):128-38. doi: 10.1179/2045772313Y.0000000159. Epub 2014 Jan 6. — View Citation
Wressle E, Marcusson J, Henriksson C. Clinical utility of the Canadian Occupational Performance Measure--Swedish version. Can J Occup Ther. 2002 Feb;69(1):40-8. doi: 10.1177/000841740206900104. — View Citation
* Note: There are 25 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Changes in MVC | Changes in maximum, voluntary, isometric muscle strength (Muscle torque, MVC) of the m. quadriceps and hamstrings from baseline to follow-up | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Change in Rate of force development (RFD) | Rate of force development (RFD) measurements of the m. quadriceps and hamstrings | 1 week before treatment; 4-,8- and 12-weeks after start of treatment | |
Secondary | Change in muscle and tendon thickness | Muscle and tendon thickness of the muscles in the upper leg | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Change in The Spinal Cord Ability Ruler (SCAR) | SCAR measures the performance of volitional tasks along with assessment of functional muscle contractions | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Timed Up & Go Test (TUG) | TUG is a standardized and reliable test for assessment of mobility, balance and walking ability in patients with SCI | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Timed 10 Meter Walk Test | Timed 10 Meter Walk Test assesses short duration walking speed. The tests has demonstrated an excellent reliability in patients with SCI | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | 6 Minute Walk Test | 6 Minute Walk Test is a reliable and valid sub-maximal test of aerobic capacity/endurance | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Walking Index for Spinal Cord Injury (WISCI-II) | WISCI-II is a valid and reliable test, which assesses the type and amount of assistance required by a person with spinal cord injury (SCI) for walking | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Change in self-reported, neuropathic pain level | Numeric Rating Scale (NRS, scale 0-10) is a validated, subjective measure for acute and chronic neuropathic pain. | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Changes in blood marker - Growth hormone, Insulin-like growth factor 1 (IGF-1), creatine kinase, cortisol, testosterone, myoglobin | Venous blood samples regarding muscle damage, recovery and protein synthesis will be obtained | Immediately before and three hours after the first training session. Additionally, 4-, 8- and 12-weeks after start of treatment | |
Secondary | Changes in quality of life | International spinal cord injury data sets - quality of life basic data set (QoLBDS) is a short valid questionnaire investigating QoL in a SCI population | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Changes in WHODAS 2.0 | WHODAS 2.0 is a reliable and valid instrument measuring activity and participation in the context of functioning in people with SCI | 1 week before treatment; 4-, 8- and 12-weeks after start of treatment | |
Secondary | Changes in accelerometer data | Activity classification using accelerometers will be obtained using a sensor on the upper leg | Accelerometer data will be obtained 3 x 1 week prior to and during the intervention period. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |