Spinal Cord Injuries Clinical Trial
Official title:
Activity-Dependent Transspinal Stimulation for Recovery of Walking Ability After Spinal Cord Injury
Verified date | August 2022 |
Source | City University of New York |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Robotic gait training is often used with the aim to improve walking ability in individuals with Spinal Cord Injury. However, robotic gait training alone may not be sufficient. This study will compare the effects of robotic gait training alone to robotic gait training combined with either low-frequency or high-frequency non-invasive transspinal electrical stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of nerve function will be performed before and after 20 sessions of gait training with or without stimulation.
Status | Terminated |
Enrollment | 10 |
Est. completion date | October 2, 2021 |
Est. primary completion date | October 1, 2021 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion criteria: - Clinical diagnosis of motor incomplete spinal cord injury (SCI). - SCI is above thoracic 12 vertebra. - Absent permanent ankle joint contractures. - SCI occurred 6 months before enrollment to the study. Exclusion criteria: - Supraspinal lesions - Neuropathies of the peripheral nervous system - Degenerative neurological disorders of the spine or spinal cord - Motor complete SCI - Presence of pressure sores - Urinary tract infection - Neoplastic or vascular disorders of the spine or spinal cord - Pregnant women or women who suspect they may be or may become pregnant. - People with cochlear implants, pacemaker and implanted stimulators - People with history of seizures - People with implanted Baclofen pumb |
Country | Name | City | State |
---|---|---|---|
United States | Veterans Affairs Medical Center | Bronx | New York |
United States | Department of Physical Therapy, Motor Control and NeuroRecovery Laboratory | Staten Island | New York |
Lead Sponsor | Collaborator |
---|---|
City University of New York | Bronx Veterans Medical Research Foundation, Inc |
United States,
Adams MM, Ginis KA, Hicks AL. The spinal cord injury spasticity evaluation tool: development and evaluation. Arch Phys Med Rehabil. 2007 Sep;88(9):1185-92. — View Citation
Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987 May;25(3):341-4. — View Citation
Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci. 2010 Aug 11;30(32):10918-26. doi: 10.1523/JNEUROSCI.1435-10.2010. — View Citation
Chang CW, Lien IN. Estimate of motor conduction in human spinal cord: slowed conduction in spinal cord injury. Muscle Nerve. 1991 Oct;14(10):990-6. — View Citation
Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998 Dec;80(6):2870-81. — View Citation
Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001 May;39(5):252-5. — View Citation
Conway BA, Knikou M. The action of plantar pressure on flexion reflex pathways in the isolated human spinal cord. Clin Neurophysiol. 2008 Apr;119(4):892-6. doi: 10.1016/j.clinph.2007.12.015. Epub 2008 Mar 4. — View Citation
Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Cent Nerv Syst Trauma. 1986 Spring;3(2):129-44. — View Citation
Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: II. Neurophysiologic observations. Cent Nerv Syst Trauma. 1986 Spring;3(2):145-52. — View Citation
Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006 Feb 28;66(4):484-93. — View Citation
Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. J Neurophysiol. 2010 May;103(5):2808-20. doi: 10.1152/jn.00316.2009. — View Citation
Einhorn J, Li A, Hazan R, Knikou M. Cervicothoracic multisegmental transpinal evoked potentials in humans. PLoS One. 2013 Oct 7;8(10):e76940. doi: 10.1371/journal.pone.0076940. eCollection 2013. — View Citation
Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011 Jan;91(1):48-60. doi: 10.2522/ptj.20090359. Epub 2010 Nov 4. — View Citation
Gad P, Choe J, Shah P, Garcia-Alias G, Rath M, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR. Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats. J Neuroeng Rehabil. 2013 Oct 24;10:108. doi: 10.1186/1743-0003-10-108. — View Citation
Hajela N, Mummidisetty CK, Smith AC, Knikou M. Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia. Biomed Res Int. 2013;2013:516427. doi: 10.1155/2013/516427. Epub 2012 Dec 26. — View Citation
Hofstoetter US, Knikou M, Guertin PA, Minassian K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr Pharm Des. 2017;23(12):1805-1820. doi: 10.2174/1381612822666161214144655. Review. — View Citation
Hofstoetter US, Krenn M, Danner SM, Hofer C, Kern H, McKay WB, Mayr W, Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif Organs. 2015 Oct;39(10):E176-86. doi: 10.1111/aor.12615. Epub 2015 Oct 6. — View Citation
Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014 Mar;37(2):202-11. doi: 10.1179/2045772313Y.0000000149. Epub 2013 Nov 26. — View Citation
Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR. Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs. 2008 Aug;32(8):644-8. doi: 10.1111/j.1525-1594.2008.00616.x. — View Citation
Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord: role of NMDA receptors. J Neurophysiol. 2012 Jun;107(11):3027-39. doi: 10.1152/jn.00015.2012. Epub 2012 Mar 7. — View Citation
James ND, Bartus K, Grist J, Bennett DL, McMahon SB, Bradbury EJ. Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J Neurosci. 2011 Dec 14;31(50):18543-55. doi: 10.1523/JNEUROSCI.4306-11.2011. — View Citation
Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Flexion reflex modulation during stepping in human spinal cord injury. Exp Brain Res. 2009 Jul;196(3):341-51. doi: 10.1007/s00221-009-1854-x. Epub 2009 May 26. — View Citation
Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res. 2009 Mar;193(3):397-407. doi: 10.1007/s00221-008-1636-x. Epub 2008 Nov 15. — View Citation
Knikou M, Conway BA. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury. Spinal Cord. 2005 Nov;43(11):640-8. — View Citation
Knikou M, Dixon L, Santora D, Ibrahim MM. Transspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity. J Neurophysiol. 2015 Sep;114(3):1486-99. doi: 10.1152/jn.00449.2015. Epub 2015 Jun 24. — View Citation
Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC. Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol. 2011 Jul;122(7):1396-404. doi: 10.1016/j.clinph.2010.12.044. Epub 2011 Jan 14. — View Citation
Knikou M, Hajela N, Mummidisetty CK. Corticospinal excitability during walking in humans with absent and partial body weight support. Clin Neurophysiol. 2013 Dec;124(12):2431-8. doi: 10.1016/j.clinph.2013.06.004. Epub 2013 Jun 28. — View Citation
Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014 Jun 1;111(11):2264-75. doi: 10.1152/jn.00871.2013. Epub 2014 Mar 5. — View Citation
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015 Apr 1;113(7):2447-60. doi: 10.1152/jn.00872.2014. Epub 2015 Jan 21. — View Citation
Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013 Jul;228(3):279-96. doi: 10.1007/s00221-013-3560-y. Epub 2013 May 25. — View Citation
Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010 Oct;121(10):1655-68. doi: 10.1016/j.clinph.2010.01.039. Epub 2010 Apr 27. Review. — View Citation
Knikou M. Neurophysiological characteristics of human leg muscle action potentials evoked by transcutaneous magnetic stimulation of the spine. Bioelectromagnetics. 2013 Apr;34(3):200-10. doi: 10.1002/bem.21768. Epub 2012 Nov 28. — View Citation
Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics. 2013 Dec;34(8):630-40. doi: 10.1002/bem.21808. Epub 2013 Sep 20. — View Citation
Knikou M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012;2012:254948. doi: 10.1155/2012/254948. Epub 2012 Jun 4. Review. — View Citation
Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008 Jun 15;171(1):1-12. doi: 10.1016/j.jneumeth.2008.02.012. Epub 2008 Mar 4. Review. — View Citation
Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One. 2014 Jul 9;9(7):e102313. doi: 10.1371/journal.pone.0102313. eCollection 2014. — View Citation
Maertens de Noordhout A, Rothwell JC, Thompson PD, Day BL, Marsden CD. Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry. 1988 Feb;51(2):174-81. — View Citation
Maiman DJ, Mykleburst JB, Barolat-Romana G. Spinal cord stimulation for amelioration of spasticity: experimental results. Neurosurgery. 1987 Sep;21(3):331-3. — View Citation
Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM; ASIA Neurological Standards Committee 2002. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6. — View Citation
Minassian K, Hofstoetter US, Danner SM, Mayr W, Bruce JA, McKay WB, Tansey KE. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Neurorehabil Neural Repair. 2016 Mar;30(3):233-43. doi: 10.1177/1545968315591706. Epub 2015 Jun 18. — View Citation
Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther. 2016 Apr;22(4):262-70. doi: 10.1111/cns.12530. Epub 2016 Feb 18. Review. — View Citation
Murray LM, Knikou M. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury. Front Neurol. 2017 Feb 20;8:50. doi: 10.3389/fneur.2017.00050. eCollection 2017. — View Citation
Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14. Review. — View Citation
Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast. 2016;2016:1216258. doi: 10.1155/2016/1216258. Epub 2016 May 11. Review. — View Citation
Smith AC, Mummidisetty CK, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014 Nov 1;112(9):2164-75. doi: 10.1152/jn.00308.2014. Epub 2014 Aug 13. — View Citation
Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015 Jan;233(1):89-103. doi: 10.1007/s00221-014-4094-7. Epub 2014 Sep 10. — View Citation
Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005 Oct;94(4):2844-55. Epub 2005 Jul 6. — View Citation
Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16. — View Citation
Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005 Apr;86(4):672-80. — View Citation
* Note: There are 49 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Plasticity of cortical and corticospinal neuronal circuits | Neurophysiological tests probing cortical and corticospinal excitability will be measured before and after the intervention. Single-pulse transcranial magnetic stimulation (TMS) will be used to assemble the recruitment curve of motor evoked potentials, and paired-pulse TMS will be used to probe changes in cortical inhibitory and facilitatory neuronal circuits. | 3 years | |
Primary | Plasticity of spinal neuronal circuits | Neurophysiological tests probing spinal reflex excitability will be measured before and after each intervention by posterior tibial and sural nerves stimulation during Lokomat-assisted stepping depicting the amplitude modulation of the soleus H-reflex and tibialis anterior flexor reflex. | 3 years | |
Secondary | Senorimotor leg motor function | Manual muscle test and leg sensation based on American Spinal Injury Association guidelines. | 3 years | |
Secondary | Spasticity | Tardieu scale | 3 years | |
Secondary | Walking function | Two-minute walk test and 10 meter timed test. | 3 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |