Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03139344
Other study ID # 201503732
Secondary ID R01HD082109
Status Completed
Phase N/A
First received
Last updated
Start date August 1, 2015
Est. completion date April 1, 2022

Study information

Verified date January 2023
Source University of Iowa
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Skeletal muscle is the largest endocrine organ in the body, playing an indispensable role in glucose homeostasis. Spinal cord injury (SCI) prevents skeletal muscle from carrying out this important function. Dysregulation of glucose metabolism precipitates high rates of metabolic syndrome, diabetes, and other secondary health conditions (SHCs) of SCI. These SHCs exert a negative influence on health-related quality of life (HRQOL). New discoveries support that a low level of activity throughout the day offers a more effective metabolic stimulus than brief, episodic exercise bouts. The proposed study will translate this emerging concept to the population of individuals with SCI by using low-force, long-duration electrical muscle stimulation to subsidize daily activity levels. Recently, we demonstrated that this type of stimulation up-regulates key genes that foster an oxidative, insulin-sensitive phenotype in paralyzed muscle. We will now test whether this type of activity can improve glucose homeostasis and metabolic function in patients with chronic paralysis. We hypothesize that improvements in metabolic function will be accompanied by a reduction in SHCs and a concomitant improvement in self-reported HRQOL. The long-term goal of this research is to develop a rehabilitation strategy to protect the musculoskeletal health, metabolic function, and health-related quality of life of people living with complete SCI.


Description:

Skeletal muscle is a critical organ for regulating glucose and insulin in the body as a whole, and post-spinal cord injury (SCI) adaptations in muscle severely undermine this capacity. Contemporary SCI rehabilitation for people with complete SCI does not intervene to protect the function of paralyzed skeletal muscle as a key regulator of metabolic homeostasis. Through its deleterious effects on multiple systems, metabolic disease is one of the leading sources of morbidity, mortality, and health care cost for this population. In the non-SCI population, pervasive, frequent, low-magnitude muscle contractions can increase energy expenditure by 50.3% above sitting levels. The loss of this component of muscle activity contributes to the energy imbalance and metabolic dysregulation observed in SCI. Subsidizing low-magnitude muscle contractions may offer an important metabolic stimulus for people with SCI. The significance of this study is that it builds on previous work demonstrating healthful transcriptional and translational gene adaptations in response to electrical stimulation training in SCI. These adaptations may initiate improvements in systemic biomarkers of metabolic health and improvements in secondary health conditions and health-related quality of life. In our previous work, we demonstrated that regular electrical stimulation of paralyzed muscle up-regulates PGC-1α, a key transcriptional co-activator for skeletal muscle and metabolic adaptation. Our previous work also indicates that electrical stimulation alters the expression of genes controlling mitochondrial biogenesis. However, we understand very little about the optimal amount of electrically-evoked muscle activity to deliver in order to promote positive metabolic adaptations. Long duration, low force contractions are likely to be most advantageous for promoting metabolic stability in people with chronic SCI, who also have osteoporosis and are unable to receive high force muscle contractions induced by conventional rehabilitation protocols. This study will intervene with a protocol of low-force, long-duration muscle stimulation designed to instigate systemic metabolic adaptations. In the proposed study we hypothesize that gene-level adaptations will yield tissue-level improvements in glucose utilization that facilitate systemic improvements in clinical markers of metabolic control, culminating in fewer secondary health conditions and enhanced health-related quality of life.


Recruitment information / eligibility

Status Completed
Enrollment 89
Est. completion date April 1, 2022
Est. primary completion date April 1, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Motor complete SCI (AIS A-B) Exclusion Criteria: - Pressure ulcers, chronic infection, lower extremity muscle contractures, deep vein thrombosis, bleeding disorder, recent limb fractures, pregnancy, metformin or other medications for diabetes

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Low-frequency Exercise
The quadriceps/hamstrings will perform exercise via the application of low-frequency electrical stimulation.
High-frequency Exercise
The quadriceps/hamstrings will perform exercise via the application of high-frequency electrical stimulation.

Locations

Country Name City State
United States University of Iowa Iowa City Iowa

Sponsors (2)

Lead Sponsor Collaborator
Richard K Shields Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Country where clinical trial is conducted

United States, 

References & Publications (28)

Adams CM, Suneja M, Dudley-Javoroski S, Shields RK. Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve. 2011 Jan;43(1):65-75. doi: 10.1002/mus.21831. — View Citation

Cole KR, Dudley-Javoroski S, Shields RK. Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle. J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20. — View Citation

Dudley-Javoroski S, Lee J, Shields RK. Cognitive function, quality of life, and aging: relationships in individuals with and without spinal cord injury. Physiother Theory Pract. 2022 Jan;38(1):36-45. doi: 10.1080/09593985.2020.1712755. Epub 2020 Jan 8. — View Citation

Dudley-Javoroski S, Littmann AE, Iguchi M, Shields RK. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing. J Appl Physiol (1985). 2008 Jun;104(6):1574-82. doi: 10.1152/japplphysiol.00892.2007. Epub 2008 Apr 24. — View Citation

Dudley-Javoroski S, Saha PK, Liang G, Li C, Gao Z, Shields RK. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21. — View Citation

Dudley-Javoroski S, Shields RK. Active-resisted stance modulates regional bone mineral density in humans with spinal cord injury. J Spinal Cord Med. 2013 May;36(3):191-9. doi: 10.1179/2045772313Y.0000000092. — View Citation

Dudley-Javoroski S, Shields RK. Assessment of physical function and secondary complications after complete spinal cord injury. Disabil Rehabil. 2006 Jan 30;28(2):103-10. doi: 10.1080/09638280500163828. — View Citation

Dudley-Javoroski S, Shields RK. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury. Phys Ther. 2008 Mar;88(3):387-96. doi: 10.2522/ptj.20070224. Epub 2008 Jan 17. — View Citation

Frey Law LA, Shields RK. Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clin Biomech (Bristol, Avon). 2004 Mar;19(3):313-21. doi: 10.1016/j.clinbiomech.2003.12.005. — View Citation

Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 2011 Jun 8;13(6):627-38. doi: 10.1016/j.cmet.2011.03.020. — View Citation

Lee J, Dudley-Javoroski S, Shields RK. Motor demands of cognitive testing may artificially reduce executive function scores in individuals with spinal cord injury. J Spinal Cord Med. 2021 Mar;44(2):253-261. doi: 10.1080/10790268.2019.1597482. Epub 2019 Apr 3. — View Citation

McHenry CL, Shields RK. A biomechanical analysis of exercise in standing, supine, and seated positions: Implications for individuals with spinal cord injury. J Spinal Cord Med. 2012 May;35(3):140-7. doi: 10.1179/2045772312Y.0000000011. — View Citation

McHenry CL, Wu J, Shields RK. Potential regenerative rehabilitation technology: implications of mechanical stimuli to tissue health. BMC Res Notes. 2014 Jun 3;7:334. doi: 10.1186/1756-0500-7-334. — View Citation

Oza PD, Dudley-Javoroski S, Shields RK. Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans. Rehabil Res Pract. 2017;2017:5107097. doi: 10.1155/2017/5107097. Epub 2017 Oct 31. — View Citation

Petrie M, Suneja M, Shields RK. Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985). 2015 Mar 15;118(6):723-31. doi: 10.1152/japplphysiol.00628.2014. Epub 2015 Jan 29. — View Citation

Petrie MA, Kimball AL, McHenry CL, Suneja M, Yen CL, Sharma A, Shields RK. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans. PLoS One. 2016 Aug 3;11(8):e0160594. doi: 10.1371/journal.pone.0160594. eCollection 2016. — View Citation

Petrie MA, Sharma A, Taylor EB, Suneja M, Shields RK. Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury. Physiol Genomics. 2020 Feb 1;52(2):71-80. doi: 10.1152/physiolgenomics.00064.2019. Epub 2019 Dec 23. — View Citation

Petrie MA, Suneja M, Faidley E, Shields RK. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One. 2014 Dec 22;9(12):e115791. doi: 10.1371/journal.pone.0115791. eCollection 2014. — View Citation

Petrie MA, Suneja M, Faidley E, Shields RK. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury. Physiol Rep. 2014 Feb 25;2(2):e00248. doi: 10.1002/phy2.248. eCollection 2014 Feb 1. — View Citation

Petrie MA, Taylor EB, Suneja M, Shields RK. Genomic and Epigenomic Evaluation of Electrically Induced Exercise in People With Spinal Cord Injury: Application to Precision Rehabilitation. Phys Ther. 2022 Jan 1;102(1):pzab243. doi: 10.1093/ptj/pzab243. — View Citation

Shields RK, Dudley-Javoroski S. Epigenetics and the International Classification of Functioning, Disability and Health Model: Bridging Nature, Nurture, and Patient-Centered Population Health. Phys Ther. 2022 Jan 1;102(1):pzab247. doi: 10.1093/ptj/pzab247. — View Citation

Shields RK, Dudley-Javoroski S. Monitoring standing wheelchair use after spinal cord injury: a case report. Disabil Rehabil. 2005 Feb 4;27(3):142-6. doi: 10.1080/09638280400009337. — View Citation

Shields RK. Precision Rehabilitation: How Lifelong Healthy Behaviors Modulate Biology, Determine Health, and Affect Populations. Phys Ther. 2022 Jan 1;102(1):pzab248. doi: 10.1093/ptj/pzab248. No abstract available. — View Citation

Shields RK. Turning Over the Hourglass. Phys Ther. 2017 Oct 1;97(10):949-963. doi: 10.1093/ptj/pzx072. — View Citation

Woelfel JR, Dudley-Javoroski S, Shields RK. Precision Physical Therapy: Exercise, the Epigenome, and the Heritability of Environmentally Modified Traits. Phys Ther. 2018 Nov 1;98(11):946-952. doi: 10.1093/ptj/pzy092. — View Citation

Woelfel JR, Kimball AL, Yen CL, Shields RK. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury. Med Sci Sports Exerc. 2017 May;49(5):870-878. doi: 10.1249/MSS.0000000000001187. — View Citation

Yen CL, McHenry CL, Petrie MA, Dudley-Javoroski S, Shields RK. Vibration training after chronic spinal cord injury: Evidence for persistent segmental plasticity. Neurosci Lett. 2017 Apr 24;647:129-132. doi: 10.1016/j.neulet.2017.03.019. Epub 2017 Mar 16. — View Citation

Zhorne R, Dudley-Javoroski S, Shields RK. Skeletal muscle activity and CNS neuro-plasticity. Neural Regen Res. 2016 Jan;11(1):69-70. doi: 10.4103/1673-5374.169623. No abstract available. — View Citation

* Note: There are 28 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Acute Gene Regulation: NR4A3 mRNA Expression Pre and Post-Stimulation Acute post-stimulation effect upon skeletal muscle nuclear receptor subfamily 4 group A member 3 (NR4A3) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 3 hours after a single session of electrical stimulation
Primary Acute Gene Regulation: PGC1-alpha mRNA Expression Pre and Post-Stimulation Acute post-stimulation effect upon skeletal muscle peroxisome proliferator-activated gamma coactivator (PGC1-alpha) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 3 hours after a single session of electrical stimulation
Primary Acute Gene Regulation: ABRA mRNA Expression Pre and Post-Stimulation Acute post-stimulation effect upon skeletal muscle actin binding Rho activating protein (ABRA) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 3 hours after a single session of electrical stimulation
Primary Acute Gene Regulation: PDK4 mRNA Expression Pre and Post-Stimulation Acute post-stimulation effect upon skeletal muscle pyruvate dehydrogenase kinase 4 (PDK4) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 3 hours after a single session of electrical stimulation
Primary Post-training Gene Regulation: MYH6 mRNA Expression Baseline and Post-Training Pre- and post-training skeletal muscle myosin heavy chain 6 (MYH6) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 6 months
Primary Post-training Gene Regulation: MYL3 mRNA Expression Baseline and Post-Training Pre- and post-training skeletal muscle myosin light chain 3 (MYL3) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 6 months
Primary Post-training Gene Regulation: MYH7 mRNA Expression Baseline and Post-Training Pre- and post-training skeletal muscle myosin heavy chain 7 (MYH7) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 6 months
Primary Post-training Gene Regulation: ACTN3 mRNA Expression Baseline and Post-Training Pre- and post-training skeletal muscle actin 3 (ACTN3) expression, measured via muscle biopsy and exon array analysis. Probe summarization and probe set normalization were performed using robust multichip average, which included background correction, quantile normalization, log2 transformation and median polish probe set summarization. 0 represents no mRNA expression and higher values represent greater expression compared to all genes in the microarray. 6 months
Primary Post-training Metabolism: Fasting Insulin Pre- and post-training fasting insulin, measured via venipuncture and standard laboratory assays 6 months
Primary Post-training Metabolism: Fasting Glucose Pre- and post-training fasting glucose, measured via venipuncture and standard laboratory assays 6 months
Primary Post-training Metabolism: Fasting Glucose-insulin Ratio Pre- and post-training ratio of fasting glucose to fasting insulin, measured via venipuncture and standard laboratory assays 6 months
Primary Post-training Metabolism: Fasting Hemoglobin A1c (HBA1c) Pre- and post-training fasting Hemoglobin A1C (HbA1c), measured via venipuncture and standard laboratory assays 6 months
Primary Post-training Metabolism: C-reactive Protein (CRP) Pre- and post-training C-reactive protein (CRP), measured via venipuncture and standard laboratory assays 6 months
Primary Pre-training Subject-report Measures: PROMIS Physical Health Pre-training Patient Reported Outcomes Measurement Information Systems (PROMIS) Global Health - Physical health T-score
Theoretical minimum = 16.2, Theoretical maximum = 67.7, higher scores signify more of the construct being measured (eg. physical health). US population mean = 50, SD = 10.
Baseline
Primary Pre-training Subject Report Measures: PROMIS Mental Health Pre-training Patient Reported Outcomes Measurement Information Systems (PROMIS) Global Health - Mental health T-score
Theoretical minimum = 21.2, Theoretical maximum = 67.6, higher scores signify more of the construct being measured (eg. mental health). US population mean = 50, SD = 10.
Baseline
Primary Post-training Subject-report Measures: PROMIS Physical Health Pre- and post-training Patient Reported Outcomes Measurement Information Systems (PROMIS) Global Health - Physical health T-score
Theoretical minimum = 16.2, Theoretical maximum = 67.7, higher scores signify more of the construct being measured (eg. physical health). US population mean = 50, SD = 10.
6 months
Primary Post-training Subject-report Measures: PROMIS Mental Health Pre- and post-training Patient Reported Outcomes Measurement Information Systems (PROMIS) Global Health - Mental health T-score
Theoretical minimum = 21.2, Theoretical maximum = 67.6, higher scores signify more of the construct being measured (eg. mental health). US population mean = 50, SD = 10.
6 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A