Clinical Trials Logo

Clinical Trial Summary

CSI:Brainwave is a multidisciplinary neurophysiological project, developed by the Lab of Medical Physics, School of Medicine, Aristotle University of Thessaloniki and supported by two Neurosurgical Departments. The project officially commenced on April 2014 and the first year was awarded the 2013 Mario Boni Research Grant by the Cervical Spine Research Society-European Section (CSRS-ES). The website for the project can be accessed at http://medphys.med.auth.gr/content/csi-brainwave.

The investigation's primary objectives include the development, testing and optimization of a mountable robotic arm controlled with wireless Brain-Computer Interface, the development and validation of a self-paced neuro-rehabilitation protocol for patients with Cervical Spinal Cord Injury and the study of cortical activity in acute and chronic spinal cord injury.


Clinical Trial Description

CSI:Brainwave project's full title is <Brainwave control of a wearable robotic arm for rehabilitation and neurophysiological study in Cervical Spine Injury> . It is a multidisciplinary neurophysiological project, developed by the Lab of Medical Physics and supported by two Neurosurgical Departments.

The CSI:Brainwave project involves:

1. A clinical study for rehabilitation of patients with Cervical Spinal Cord Injury (CSCI), using a Brain-Computer Interface (BCI) controlled robotic arms device.

2. A secondary off-line neurophysiological analysis of cortical activation, connectivity and plasticity in patients with CSCI undergoing motor imagery (MI) practice.

Milestones of the study:

1. The investigators aim to develop, test and optimize a mountable robotic arm controlled with wireless BCI.

2. The investigators aim to develop and validate self-paced neuro-rehabilitation protocols for patients with CSCI.

3. The investigators aim to identify and study the neurophysiological functionality and alteration of cortical activity in acute and chronic CSCI.

The CSI: Brainwave project aims at allowing patients suffering from tetraplegia due to CSCI to perform brainwave modulation, practicing Kinesthetic Motor Imagery (KMI) and Visual Motor Imagery (VMI), as well as offering neurofeedback with the form of control of a 6-degree-of-freedom, anthropomorphic bimanual robotic arms device. The project aims at demonstrating the added value of neurofeedback for rehabilitation and/or motor restoration of CSCI patients and allow for elaborate recordings of motor-related brain activity during motor tasks of the upper and lower extremities.

The robotic arms are designed to mount on a frame that acts as a docking space for the participants' armchair/wheelchair and will be directly controlled by the participants using a BCI module. The investigators aim to further modify the robotic device in order to render it mountable on the participants' actual arms.

The largest portion of the first project year was devoted to the development of robotics and the Brain-Computer Interface module of the study. The MERCURY v2.0 robotic arms is a non-commercial 6-degree-of-freedom anthropomorphic bimanual robotic arms device that was built and developed by the research team of the Medical Physics Lab. The robot was further engineered to accommodate the needs of the CSI:Brainwave project. The investigators aim to use the Emotiv EPOC wireless EEG headset and software for the development and control of the BCI module in this study. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02443558
Study type Interventional
Source Aristotle University Of Thessaloniki
Contact
Status Completed
Phase N/A
Start date December 15, 2016
Completion date December 31, 2018

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A