Spasmodic Dysphonia Clinical Trial
— cSPDystoniaOfficial title:
Cortical Silent Period in Laryngeal Dystonia
The goal of this observational study is to evaluate the cortical silent period (cSP) in cricothyroid muscle (CT) in laryngeal dystonia and control healthy subjects. The study will provide norms related to latency and amplitude of motor evoked potentials (MEPs) and duration of cSP in CT muscle in laryngeal dystonia and control healthy subjects. Findings may give a baseline in comparison to findings in laryngeal diseases and insight into maladaptive cortical control function during phonation in laryngeal diseases like laryngeal dystonia.
Status | Recruiting |
Enrollment | 20 |
Est. completion date | December 31, 2025 |
Est. primary completion date | December 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: - adults (18-65 years old), no implanted metals in the body (e.g. pacemaker, metal prosthesis in the skull and oral cavity). Exclusion Criteria: - pregnancy, other neurological disorders (except laryngeal dystonia in the laryngeal dystonia group), psychiatric disorders, epilepsy or history of previous epilepsy attack, using of brain-affecting pharmaceuticals, traumatic, tumor, infectious, metabolic brain lesions, heart conditions. The composition of the group is represented is both gender, various age gap, and different height. |
Country | Name | City | State |
---|---|---|---|
Croatia | University of Split School of Medicine | Split |
Lead Sponsor | Collaborator |
---|---|
University of Split, School of Medicine | University Hospital of Split |
Croatia,
Blitzer A, Brin MF, Stewart CF. Botulinum toxin management of spasmodic dysphonia (laryngeal dystonia): a 12-year experience in more than 900 patients. Laryngoscope. 2015 Aug;125(8):1751-7. doi: 10.1002/lary.25273. No abstract available. — View Citation
Chen M, Summers RL, Goding GS, Samargia S, Ludlow CL, Prudente CN, Kimberley TJ. Evaluation of the Cortical Silent Period of the Laryngeal Motor Cortex in Healthy Individuals. Front Neurosci. 2017 Mar 7;11:88. doi: 10.3389/fnins.2017.00088. eCollection 2017. — View Citation
Chen M, Summers RLS, Prudente CN, Goding GS, Samargia-Grivette S, Ludlow CL, Kimberley TJ. Transcranial magnetic stimulation and functional magnet resonance imaging evaluation of adductor spasmodic dysphonia during phonation. Brain Stimul. 2020 May-Jun;13(3):908-915. doi: 10.1016/j.brs.2020.03.003. Epub 2020 Mar 13. — View Citation
Deletis V, Rogic M, Fernandez-Conejero I, Gabarros A, Jeroncic A. Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus. Clin Neurophysiol. 2014 Sep;125(9):1912-22. doi: 10.1016/j.clinph.2014.01.023. Epub 2014 Feb 11. — View Citation
Pirio Richardson S, Wegele AR, Skipper B, Deligtisch A, Jinnah HA; Dystonia Coalition Investigators. Dystonia treatment: Patterns of medication use in an international cohort. Neurology. 2017 Feb 7;88(6):543-550. doi: 10.1212/WNL.0000000000003596. Epub 2017 Jan 11. — View Citation
Rogic Vidakovic M, Schonwald MZ, Rotim K, Juric T, Vulevic Z, Tafra R, Banozic A, Hamata Z, Dogas Z. Excitability of contralateral and ipsilateral projections of corticobulbar pathways recorded as corticobulbar motor evoked potentials of the cricothyroid muscles. Clin Neurophysiol. 2015 Aug;126(8):1570-7. doi: 10.1016/j.clinph.2014.11.001. Epub 2014 Nov 8. — View Citation
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015 Jun;126(6):1071-1107. doi: 10.1016/j.clinph.2015.02.001. Epub 2015 Feb 10. — View Citation
Simonyan K, Barkmeier-Kraemer J, Blitzer A, Hallett M, Houde JF, Jacobson Kimberley T, Ozelius LJ, Pitman MJ, Richardson RM, Sharma N, Tanner K; The NIH/NIDCD Workshop on Research Priorities in Spasmodic Dysphonia/Laryngeal Dystonia. Laryngeal Dystonia: Multidisciplinary Update on Terminology, Pathophysiology, and Research Priorities. Neurology. 2021 May 25;96(21):989-1001. doi: 10.1212/WNL.0000000000011922. Epub 2021 Apr 15. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Motor evoked potential (MEP) latency | MEP latency is expressed in milliseconds | MEP latency evaluated on the first day of the arrival on TMS experiment | |
Primary | Motor evoked potential (MEP) amplitude | MEP amplitude is expressed in microvolts | MEP amplitude evaluated on the first day of the arrival on TMS experiment | |
Primary | Duration of cortical silent period (cSP) | cSP is expressed in milliseconds | cSP duration evaluated on the first day of the arrival on TMS experiment |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06111027 -
Usability of Vibro-tactile Stimulation to Treat Spasmodic Dysphonia
|
Phase 1/Phase 2 | |
Withdrawn |
NCT02061943 -
Examining the Spasmodic Dysphonia Diagnosis and Assessment Procedure (SD-DAP) for Measuring Symptom Change
|
N/A | |
Recruiting |
NCT05158166 -
DaxibotulinumtoxinA Injection for Treatment of Adductor Spasmodic Dysphonia
|
Phase 1/Phase 2 | |
Recruiting |
NCT05150106 -
Characterization of Clinical Phenotypes of Laryngeal Dystonia and Voice Tremor
|
||
Recruiting |
NCT05216770 -
Understanding Disorder-specific Neural Pathophysiology in Laryngeal Dystonia and Voice Tremor
|
Early Phase 1 | |
Recruiting |
NCT05150093 -
Deep Brain Stimulation in Laryngeal Dystonia and Voice Tremor
|
N/A | |
Completed |
NCT00713414 -
Role of Neurotransmission and Functional CNS Networks in Spasmodic Dysphonia
|
||
Completed |
NCT01961297 -
Voice Tremor in Spasmodic Dysphonia: Central Mechanisms and Treatment Response
|
Phase 2 | |
Completed |
NCT00118586 -
Neuropathology of Spasmodic Dysphonia
|
||
Not yet recruiting |
NCT04938154 -
A Phase 2 Trial of Deep Brain Stimulation for Spasmodic Dysphonia
|
Phase 2 | |
Active, not recruiting |
NCT03292458 -
Sodium Oxybate in Spasmodic Dysphonia and Voice Tremor
|
Phase 2/Phase 3 | |
Completed |
NCT02957942 -
rTMS in Spasmodic Dysphonia
|
N/A | |
Completed |
NCT02558634 -
Thalamic Deep Brain Stimulation for Spasmodic Dysphonia- DEBUSSY Trial
|
N/A | |
Terminated |
NCT00895063 -
Effect of Vocal Exercise After Botulinum Toxin Injection for Spasmodic Dysphonia
|
N/A | |
Completed |
NCT05158179 -
Assessment of Laryngopharyngeal Sensation in Adductor Spasmodic Dysphonia
|
N/A | |
Not yet recruiting |
NCT06078527 -
Assessment of Laryngopharyngeal Sensation: Cancer Survivor Cohort
|
N/A | |
Enrolling by invitation |
NCT05892770 -
Zinc Supplementation Prior to Botox Injections for Spasmodic Dysphonia
|
Phase 1/Phase 2 | |
Completed |
NCT04648891 -
Spasmodic Dysphonia Pain
|
Phase 2/Phase 3 | |
Completed |
NCT03042962 -
Brain Networks in Dystonia
|
||
Completed |
NCT03746509 -
Laryngeal Vibration for Spasmodic Dysphonia
|
N/A |