Clinical Trials Logo

Clinical Trial Summary

Small cell lung cancer is an aggressive neuroendocrine tumour that often presents with extensive (metastatic) disease. Chemotherapy is the mainstay of treatment, with radiotherapy to the primary tumour. It is now part of care to also offer Prophylactic Cranial Irradiation (PCI) in order to prevent spread of the cancer into the brain.

Cognitive impairment can result after cranial irradiation. Lithium is thought to be neuroprotective. It is hypothesized that lithium administration with PCI will be safe, tolerable and feasible, and can be studied to prevent or ameliorate the ensuing cognitive impairment.


Clinical Trial Description

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumour that often presents with extensive (metastatic) disease.[1] It frequently has micrometastatic disease at presentation. Chemotherapy is the mainstay of treatment with radiotherapy to the primary tumour. It is now part of care to offer Prophylactic Cranial Irradiation (PCI)with 25 Gy in 10 fractions dependent on the extent of response in the primary tumour and the patient's performance status. PCI is routine care for limited stage patients showing response and can be considered in selected patients with limited stage disease showing good response.Somnolence syndrome is a common intermediate side effect of cranial radiotherapy that occurs about six weeks after treatment and manifests as lethargy, increased sleepiness and poor attention or subtle memory changes and altered temperament[2].

The use of cranial irradiation is linked to neurocognitive complications such as long term memory, mood and concentration issues[3]. Decline in attention, executive function, motor, language and general intellectual skills have all been reported. There is the suggestion of a more rapid progression of dementing illness in patients receiving cranial irradiation although the numbers of long term survivors is limited[3]. Radiation mediates neurocognitive effects by affecting glial cells, neural stem and progenitor cells[4, 5] and the vascular structures[3, 6]. Cranial irradiation delivered to mice has been shown to reduce neural proliferation translating to long term reduction in neurogenesis[7, 8]. Lithium confers neuroprotection and is associated with less cognitive loss in various brain injury models including after cranial irradiation[9, 10]. In addition, neural stem/progenitor cells positively respond to Lithium treatment under basal conditions[11, 12]. In humans, 4 weeks of Lithium increases brain grey matter content[13] and hippocampal volume[14] as evidenced by MRI scanning. Lithium was found to protect irradiated hippocampal neurons in mice from apoptosis resulting in better performance reflecting learning and memory function[10]. Lithium is known to reduce oxidative stress, specifically via the glutathione system. Lithium is a standard part of the management of moderate to severe bipolar disorder and schizoaffective disorders and its toxicity profile is well understood[15, 16]. In bipolar disorder, lithium has been shown to prevent the loss of cortical grey matter that occurs as part of the neuroprogressive cascade seen in the disorder[17]. There is limited prospective clinical data regarding the use of lithium as a neuroprotectant. A large Danish observational cohort study, demonstrated that use of lithium (in those with mood disorders, who display an increased risk for dementia) was associated with reduction of the rate of dementia to the same level as that for the general population[18]. A follow up study by the same group showed similar findings[19]. A metaanalysis of lithium on cognitive performance demonstrated minor negative effects on cognition[20]. There has been one early phase study using lithium as a neuroprotective agent presented in abstract form at the 2007 American Society for Therapeutic Radiology and Oncology (ASTRO)[21] and updated at the 2008 annual meeting of the Society of NeuroOncology (SNO)[22].

Long term lithium treatment has also shown promise in amnestic mild cognitive impairment in a study that randomized 45 participants to receive lithium (0.25-0.5 mmol/l) (n = 24) or placebo (n = 21) in a 12 month, doubleblind trial[23]. Lithium treatment was associated with a significant decrease in CSF concentrations of Ptau(P =0.03) and better performance on the cognitive subscale of the Alzheimer's Disease Assessment Scale and in attention tasks. The data support the notion that lithium has disease modifying properties with potential clinical implications in the prevention of Alzheimer's disease.[23]

References:

1. Turrisi AT, 3rd, Kim K, Blum R et al. Twice daily compared with once daily thoracic radiotherapy in limited small cell lung cancer treated concurrently with cisplatin and etoposide. N England J Med 1999; 340: 265271.

2. Kelsey CR, Marks LB. Somnolence syndrome after focal radiation therapy to the pineal region: case report and review of the literature. J Neurooncol 2006; 78: 153156.

3. Armstrong CL, Gyato K, Awadalla AW et al. A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neurophysiol Rev 2004; 14: 6586.

4. Monje ML, Vogel H, Masek M et al. Impaired human hippocampal neurogenesis after treatment for central nevrous system malignancies. Ann Neurol. 2007; 62, 515520.

5. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003; 129134.

6. Perry A, Schmidt RE. Cancer therapy associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 2006; 111: 197212.

7. Rola R, Raber J, Rizk A et al. Radiation induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188: 316330.

8. Vorhees CV, Williams MT. Morris water maze procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1: 848858.

9. Rowe MK, Chuang DM. Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol. Med. 2004;6: 118.

10. Yazlovitskaya EM, Edwards E, Thotala D et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res 2006; 66: 1117911186.

11. Chen G, Rajokowska G, Du F et al. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 2000; 75: 17291734.

12. Yan XB, Hou HL, Wu LM et al. Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology 2007;53: 487495.

13. Moore GJ, Bebchuk JM, WIlds IB et al. Lithium induced increase in human brain grey matter. Lancet 2000; 356:12411242.

14. Foland LC, Altshuler LL, Sugar CA et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport 2008;19:221224.

15. Dowdan J. Therapeutic Guidelines: Psychotropic. (Version 5). Melbourne: 2003.

16. Foutoulakis KN, Vieta E, SanchezMoreno J et al. Treatment guidelines for bipolar disorder: a critical review. J Affect Disord 2005; 86:110.

17. Berk M, Kapczinski F, Andreazza AC et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 35:804817.

18. Kessing LV, SOndergard L, Forman JL, Andersen PK. Lithium treatment and risk of dimential. Arch Gen Psychiatry 2008; 65: 13311335.

19. Kessing LV, Forman JL, Andersen PK. Does lithium protect against dementia? Bipolar Disord 2010; 12: 8794.

20. Wingo AP, Wingo TS, Harvey PD, Baldessarini RJ. Effects of lithium on cognitive performance: a metaanalysis. J. Clin Psychiatry 2009; 70: 15881597.

21. Yang ES, Lu B, Hallahan DE. Lithium mediated neuroprotection during cranial irradiation: A phase 1 trial. In ASTRO (American SOciety for Therapeutic Radiology and Oncology) 49th Annual Conference. Los Angeles CA:

2007 [22] Xia F, Yang E, Hallahan D, Lu B. Lithium mediated neuroprotection during cranial irradiation: a phase I trial. Neurooncology 2008; 10: 887887.

[23] Forlenza OV, Diniz BS, Radanovic M et al. Disease modifying properties of long term lithium treatment for amnestic mild cognitive impairment: randomized controlled trial. The British Journal of Psychiatry: The Journal of Mental Science 2011; 198: 351356. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01486459
Study type Interventional
Source Barwon Health
Contact
Status Terminated
Phase N/A
Start date November 2012
Completion date September 2014

See also
  Status Clinical Trial Phase
Not yet recruiting NCT03651219 - Mesylate Apatinib Combined With Irinotecan in Treatment of Recurrent Small Cell Lung Cancer Phase 3
Active, not recruiting NCT03958045 - Combination Rucaparib With Nivolumab in Small Cell Lung Carcinoma Phase 2
Completed NCT04381910 - Irinotecan Hydrochloride Liposome Injection (LY01610) For Small Cell Lung Cancer Phase 2
Active, not recruiting NCT04885998 - AMG 757 and AMG 404 in Subjects With Small Cell Lung Cancer (SCLC) Phase 1
Active, not recruiting NCT03703297 - Study of Durvalumab + Tremelimumab, Durvalumab, and Placebo in Limited Stage Small-Cell Lung Cancer in Patients Who Have Not Progressed Following Concurrent Chemoradiation Therapy Phase 3
Recruiting NCT05903092 - MOnaliZumab in Combination With durvAlumab (MEDI4736) Plus Platinum-based chemotheRapy for First-line Treatment of Extensive Stage Small Cell Lung Cancer Phase 2
Completed NCT03652077 - A Safety and Tolerability Study of INCAGN02390 in Select Advanced Malignancies Phase 1
Terminated NCT04422210 - A Study Evaluating The Safety, Tolerability, Pharmacokinetics, And Efficacy Of Venetoclax In Combination With Atezolizumab, Carboplatin, And Etoposide In Participants With Untreated Extensive-Stage Small Cell Lung Cancer (ES-SCLC). Phase 1
Not yet recruiting NCT02875457 - Apatinib as the Maintenance Therapy for Extensive Stage Small Cell Lung Cancer After Combined With Etoposide/Cisplatin Phase 3
Recruiting NCT02605811 - Temozolomide in Preventing Brain Metastases in Small Cell Lung Cancer Phase 2
Recruiting NCT02577627 - Multi-Indication, Retrospective Oncological Study to Validate the Accuracy in Predicting TTP by PrediCare in Patients Under SOC N/A
Withdrawn NCT02542137 - Abscopal Effect for Metastatic Small Cell Lung Cancer Phase 2
Completed NCT02551432 - Pembrolizumab and Paclitaxel in Refractory Small Cell Lung Cancer Phase 2
Recruiting NCT02262897 - The Efficacy and Safety of Nab-paclitaxel in Pretreated Patients With Extensive Disease of Small Cell Lung Cancer Phase 2
Completed NCT01943578 - Value of Physical Capacity Tests in Lung Cancer N/A
Completed NCT01831089 - Phase I Study of Lurbinectedin (PM01183) in Combination With Paclitaxel, With or Without Bevacizumab, in Selected Advanced Solid Tumors Phase 1
Terminated NCT00969306 - Chloroquine as an Anti-Autophagy Drug in Stage IV Small Cell Lung Cancer (SCLC) Patients Phase 1
Completed NCT01497873 - A Randomized Study to Compare the Efficacy and Safety of Belotecan and Topotecan as Monotherapy for Sensitive-Relapsed Small Cell Lung Cancer Phase 2
Terminated NCT00958022 - Carboplatin and Etoposide Plus LBH589 for Small Cell Lung Cancer Phase 1
Completed NCT00930891 - Bevacizumab in Extensive Small Cell Lung Cancer Phase 2/Phase 3