Skeletal Dysplasia Clinical Trial
Official title:
Decoding the Genetic Landscape of Skeletal Diseases
This 5-year project aims to (1) search for genetic causes for yet unsolved congenital skeletal disorders (GSDs); (2) study consequences of the newly identified pathogenic variants in cells and in transgenic mice, (3) summarize data on natural course and complications for different GSD groups. For patients with unsolved GSD, the investigators search for molecular causes of GSDs using whole genome sequencing (WGS) and total ribonucleic acid (RNA) sequencing. Candidate gene variants are selected using genome or transcriptome sequencing data, clinical findings and screening of omics databases. Causality of the new variants is studied in cells and in transgenic mice models. Molecular and clinical findings are summarized for different GSD groups.
Genetic skeletal disorders (GSDs) are a large group of rare diseases caused by abnormalities in genes regulating skeletal development. This 5-year project aims to (1) search for genetic causes for yet unsolved congenital skeletal disorders; (2) study consequences of the newly identified pathogenic variants in cells and in transgenic mice, (3) summarize data on natural course and complications for different GSD groups. The project is a collaboration between the Dept of Clinical Genetics, Karolinska University Hospital, Lab of Clinical Genetics and Lab of Bone and Cartilage Physiology, Karolinska Institutet and Sahlgrenska Academy. In a well-characterized group of 300 GSD participants whose DNA samples were analyzed using whole genome sequencing (WGS), there are 120 study participants with unsolved diagnoses. For those participants, we search for molecular causes of GSDs using WGS and total RNA sequencing. Candidate gene variants are selected using genome or transcriptome sequencing data, clinical findings and screening of omics databases. Causality of the new variants is studied in cells and in transgenic mice models. Molecular and clinical findings are summarized for different GSD groups. Our results improve diagnostics for GSDs, advance knowledge on pathogenesis and help establishing new individual follow-up and treatment strategies for patients with GSDs. This project increases understanding of skeletal pathophysiology and will contribute to the development of novel treatment methods for skeletal diseases. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT03548779 -
North Carolina Genomic Evaluation by Next-generation Exome Sequencing, 2
|
N/A | |
Recruiting |
NCT05247645 -
Data Collection of Patients With Rare Bone Diseases
|
||
Recruiting |
NCT06002373 -
Assessment of Artificial Intelligence for Treatment Decision Recommendation of Adult Skeletal Class III Patients
|
||
Recruiting |
NCT05991609 -
Extreme Morphology and Metabolic Health
|
||
Terminated |
NCT02762318 -
Identification and Characterization of Bone-related Genetic Variants in Families
|