Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01088490
Other study ID # H2S_1
Secondary ID
Status Completed
Phase N/A
First received March 12, 2010
Last updated December 3, 2014
Start date January 2010
Est. completion date January 2014

Study information

Verified date December 2014
Source University Medical Centre Ljubljana
Contact n/a
Is FDA regulated No
Health authority Slovenia: Ministry of Health
Study type Observational

Clinical Trial Summary

Hydrogen sulfide (H2S), better known as a poisonous gas, has emerged as the third gaseous transmitter in mammals, next to nitric oxide (NO) and carbon monoxide (CO). Increased production and higher serum concentrations were shown in inflammatory diseases, septic shock and stroke. The investigators will test the hypothesis that higher serum H2S concentrations on admission to intensive care unit (ICU) are linked with higher mortality in patients with shock of any reason.


Description:

Hydrogen sulfide (H2S), better known as a poisonous gas, has lately emerging as a third gaseous transmitter in mammals, next to nitric oxide (NO) and carbon monoxide (CO). H2S is present in most human tissues in concentrations up to 50 μM. Most of it is synthesized in brain, cardiovascular system, kidneys and liver. In human tissues H2S is synthesized from L-cysteine by two enzymes cystathionine-γ-lyase and cystathionine-β-synthase. H2S works by stimulating ATP sensitive potassium channels and is involved in regulation of vascular tone, myocardial contractility, insulin secretion and neurotransmission. In numerous animal models, H2S deficiency was shown in arterial and pulmonary arterial hypertension, Alzheimer's disease and liver cirrhosis. Increased production and higher serum concentrations were shown in inflammatory diseases, septic shock and stroke.

Most of studies so far were conducted on animals and already show some therapeutic potentials. In available literature there have been no studies in humans focused on H2S concentrations in critically ill and its prognostic value.

Hypothesis We will test the hypothesis that higher serum H2S concentrations on admission to ICU are linked with higher mortality in patients with shock of any reason.

Serum H2S concentrations are related to treatment support with vaso-active drugs (noradrenalin, epinephrine).

Material and methods In the study we will include adult patients admitted to medical ICU due to shock of any reason. Shock is defined as systemic arterial pressure lower than 90mmHg or drop for systemic arterial pressure at least 40mmHg for 15minutes or more with elevation of serum lactate value.

Patients will be included on basis of clinical appearance of shock - hypotension or need for vasopressors, brady- or tachycardia, signs of peripheral hypo perfusion, oliguria and changes in mental status.

Exclusion criteria: patient younger then 18years and patients not in shock

From blood samples drawn on admission to ICU we will measure H2S concentration. H2S concentration will be measured spectrophotometrically5 as first described in 19496 and further refined in 19657. Spectrophotometrical determination of H2S concentration in tissue and plasma was previously used by many researchers.3,8-11 Blood samples will be centrifuged as quickly after collection to obtain plasma. 200 μL of plasma will be mixed with pre-prepared solution of 100 μL 10% (wt/vol) trichloroacetic acid and 60 μL 1% (wt/vol) zinc acetate, to trap dissolved H2S. The mixture will be frozen at 20 C until further analysis.

After sufficient number of samples will be obtained, we will measure H2S concentration in series. 40µL 20 µM N,N-dimethyl-p-phenylenediamine sulfate in 7,2 M HCl and 40µL 30 µM FeCl3 v 1,2 M HCl will be added to unfrozen samples. After 10-20 min incubation at room temperature final mixtures will be centrifuged at 9000 rpm for 5 minutes to remove precipitate. After centrifugation absorption at 670 nm will be measured with spectrophotometer. All analysis will be done in duplicates.

Calibration curve of absorbance versus sulfide concentration will be obtained from known concentration of Na2S (0,699 µM - 69,93 µM) and concentrations of H2S in plasma calculated.

Impact of plasma H2S concentration on admission to ICU on ICU mortality will be observed trough nonparametric statistical analysis.

Expectations We hypothesize that higher serum H2S concentrations on admission to ICU in patients with shock of any cause are indicators of severity of shock and cardiovascular deterioration, related to treatment support with vaso-active drugs (noradrenalin, epinephrine). Thus higher serum H2S concentrations are expected to be better prognostic factor of ICU mortality in patients with shock than currently established lactic acid.


Recruitment information / eligibility

Status Completed
Enrollment 50
Est. completion date January 2014
Est. primary completion date January 2012
Accepts healthy volunteers No
Gender Both
Age group 18 Years to 95 Years
Eligibility Inclusion Criteria:

- shock ( systemic arterial pressure less then 120mmHg, elevated lactate > 2.5mmol/L)

Exclusion Criteria:

- patients admitted due to intoxication with H2S

Study Design

Observational Model: Cohort, Time Perspective: Prospective


Related Conditions & MeSH terms


Locations

Country Name City State
Slovenia University Medical Center Ljubljana

Sponsors (1)

Lead Sponsor Collaborator
University Medical Centre Ljubljana

Country where clinical trial is conducted

Slovenia, 

References & Publications (8)

Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996 Feb 1;16(3):1066-71. — View Citation

Collin M, Thiemermann C. Hydrogen sulfide and sulfite: novel mediators in the pathophysiology of shock and inflammation. Shock. 2005 Dec;24(6):595-6. — View Citation

Hui Y, Du J, Tang C, Bin G, Jiang H. Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats. J Infect. 2003 Aug;47(2):155-60. — View Citation

Lawrence NS, Davis J, Compton RG. Analytical strategies for the detection of sulfide: a review. Talanta. 2000 Aug 16;52(5):771-84. — View Citation

Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 2005 Jul;19(9):1196-8. Epub 2005 Apr 29. — View Citation

Lowicka E, Beltowski J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol Rep. 2007 Jan-Feb;59(1):4-24. Review. — View Citation

Mok YY, Atan MS, Yoke Ping C, Zhong Jing W, Bhatia M, Moochhala S, Moore PK. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol. 2004 Dec;143(7):881-9. Epub 2004 Oct 25. — View Citation

Zhang H, Zhi L, Moore PK, Bhatia M. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1193-201. Epub 2006 Jan 20. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Prognostic value of H2S relationship between H2S and mortality of patients during intensive care treatment,
comparison of H2S and lactate prognostic value
In hospital; ICU mortality 30days Yes
Secondary Correlation of H2S with vasopressor requirements relationship between H2S and dose of vasopressors (noradrenaline, epinephrine) used ICU treatmennt 30days No
See also
  Status Clinical Trial Phase
Not yet recruiting NCT05898126 - Renin-guided Hemodynamic Management in Patients With Shock N/A
Completed NCT05563701 - Evaluation of the LVivo Image Quality Scoring (IQS)
Recruiting NCT05066256 - LV Diastolic Function vs IVC Diameter Variation as Predictor of Fluid Responsiveness in Shock N/A
Not yet recruiting NCT06285513 - Cardiovascular Metabolic Remodeling in Shock
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Terminated NCT02755155 - Optimization of Therapeutic Human Serum Albumin Infusion in Selected Critically Ill Patients Phase 4
Not yet recruiting NCT01941472 - Transcutaneous pO2, Transcutaneous pCO2 and Central Venous pO2 Variations to Predict Fluid Responsiveness N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Terminated NCT01696175 - PICU Admission Lactate and Central Venous Oxymetry Study N/A
Recruiting NCT01157299 - Hemodynamic Evaluation of Preload Responsiveness in Children by Using PiCCO N/A
Recruiting NCT01174966 - Assessment of Transcutaneous Oxygen Tension/Oxygen Challenge Test in Intensive Care Unit (ICU) Patients N/A
Completed NCT00743522 - Programming Implantable Cardioverter Defibrillators in Patients With Primary Prevention Indication
Completed NCT03296891 - Point of Care Ultrasonography In The Management of Shock: A Pilot Study N/A
Recruiting NCT05922982 - Norepinephrine Weaning Guided by the Hypotension Prediction Index in Vasoplegic Shock After Cardiac Surgery N/A
Withdrawn NCT04705701 - Comparing Post Cardiac Surgery Outcomes in ESRD Patient's With Early Dialysis Versus Standard Care N/A
Recruiting NCT04615065 - Acutelines: a Large Data-/Biobank of Acute and Emergency Medicine
Completed NCT05330676 - Evaluation of Microcirculatory Function and Mitochondrial Respiration After Cardiovascular Surgery
Active, not recruiting NCT04079829 - Postoperative Respiratory Abnormalities
Completed NCT04089098 - VOLume and Vasopressor Therapy in Patients With Hemodynamic instAbility
Completed NCT03190408 - Variation in Fluids Administered in Shock