Sepsis Clinical Trial
Official title:
Biomarker-enhanced Artificial Intelligence Based Pediatric Sepsis Screening Tool Towards Early Recognition and Personalized Therapeutics
The overall objective of this proposed research is the derivation of a biomarker-enhanced artificial intelligence (AI)-based pediatric sepsis screening tool (PSCT) (software) that can be used in combination with the hospital's electronic health record (EHR) system to monitor and assess real-time emergency department (ED) electronic health record (EHR) data towards the enhancement of early pediatric sepsis recognition and the initiation of timely, aggressive personalized sepsis therapy known to improve patient outcomes. It is hypothesized that the screening performance (e.g., positive predictive value) of the envisioned screening tool will be significantly enhanced by the inclusion of a biomarker panel test results (PERSEVERE) that have been shown to be effective in prediction of clinical deterioration in non-critically ill immunocompromised pediatric patients evaluated for infection. It is also hypothesized that enhanced phenotypes can be derived by clustering PERSEVERE biomarkers combined with routinely collected EHR data towards improved personalized medicine.
Status | Recruiting |
Enrollment | 2400 |
Est. completion date | June 2024 |
Est. primary completion date | February 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 3 Months to 17 Years |
Eligibility | Inclusion Criteria: Patients 3 months -17 years of age, inclusive - Diagnosed with sepsis by a clinician or trigger a sepsis alert and a blood culture is ordered. Controls will be false positive patients. - For those patients that will be prospectively enrolled for blood sample collection: will require a venipuncture or intravenous line placement. Exclusion Criteria: - Patients participating in an investigational program with interventions outside of routine clinical practice - Patients with parents or LARs that don't speak English or Spanish - Pregnancy |
Country | Name | City | State |
---|---|---|---|
United States | Children's National Hospital | Washington | District of Columbia |
Lead Sponsor | Collaborator |
---|---|
Computer Technology Associates, Inc. | Children's Hospital Medical Center, Cincinnati, Emory University, Johns Hopkins All Children's Hospital, Johns Hopkins University, Rainbow Babies and Children's Hospital |
United States,
Beglinger B, Rohacek M, Ackermann S, Hertwig R, Karakoumis-Ilsemann J, Boutellier S, Geigy N, Nickel C, Bingisser R. Physician's first clinical impression of emergency department patients with nonspecific complaints is associated with morbidity and mortality. Medicine (Baltimore). 2015 Feb;94(7):e374. doi: 10.1097/MD.0000000000000374. — View Citation
Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061. — View Citation
Brewer A, Helfgott MA, Novak J, Schanhals R. An application of cmaps in the description of clinical information structure and logic in electronic health records. Glob Adv Health Med. 2012 Sep;1(4):16-31. doi: 10.7453/gahmj.2012.1.4.003. — View Citation
Bujang MA, Adnan TH. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J Clin Diagn Res. 2016 Oct;10(10):YE01-YE06. doi: 10.7860/JCDR/2016/18129.8744. Epub 2016 Oct 1. — View Citation
C. D. Sutton, "Classification and Regression Trees, Bagging, and Boosting," Handb. Stat., vol. 24, pp. 303-329, 2005, doi: 10.1016/S0169-7161(04)24011-1.
Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS; ARDS Network. Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax. 2018 May;73(5):439-445. doi: 10.1136/thoraxjnl-2017-211090. Epub 2018 Feb 24. — View Citation
Eisenberg M, Madden K, Christianson JR, Melendez E, Harper MB. Performance of an Automated Screening Algorithm for Early Detection of Pediatric Severe Sepsis. Pediatr Crit Care Med. 2019 Dec;20(12):e516-e523. doi: 10.1097/PCC.0000000000002101. — View Citation
Eisenberg MA, Freiman E, Capraro A, Madden K, Monuteaux MC, Hudgins J, Harper M. Outcomes of Patients with Sepsis in a Pediatric Emergency Department after Automated Sepsis Screening. J Pediatr. 2021 Aug;235:239-245.e4. doi: 10.1016/j.jpeds.2021.03.053. Epub 2021 Mar 30. — View Citation
Feuillet F, Bellanger L, Hardouin JB, Victorri-Vigneau C, Sebille V. On Comparison of Clustering Methods for Pharmacoepidemiological Data. J Biopharm Stat. 2015;25(4):843-56. doi: 10.1080/10543406.2014.920855. — View Citation
Gardlund B, Dmitrieva NO, Pieper CF, Finfer S, Marshall JC, Taylor Thompson B. Six subphenotypes in septic shock: Latent class analysis of the PROWESS Shock study. J Crit Care. 2018 Oct;47:70-79. doi: 10.1016/j.jcrc.2018.06.012. Epub 2018 Jun 8. — View Citation
Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:191-200. eCollection 2020. — View Citation
Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005 Jan;6(1):2-8. doi: 10.1097/01.PCC.0000149131.72248.E6. — View Citation
Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014 Apr;48:193-204. doi: 10.1016/j.jbi.2014.02.013. Epub 2014 Feb 26. — View Citation
Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, Chen L, Flanders S. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014 Jun;52(6):e39-43. doi: 10.1097/MLR.0b013e318268ac86. — View Citation
Jacobs L, Berrens Z, Stenson EK, Zackoff MW, Danziger LA, Lahni P, Wong HR. The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) Biomarkers Predict Clinical Deterioration and Mortality in Immunocompromised Children Evaluated for Infection. Sci Rep. 2019 Jan 23;9(1):424. doi: 10.1038/s41598-018-36743-z. — View Citation
Kent P, Jensen RK, Kongsted A. A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med Res Methodol. 2014 Oct 2;14:113. doi: 10.1186/1471-2288-14-113. — View Citation
L. Medsker, M. Tan, and E. Turban, "Knowledge acquisition from multiple experts: Problems and issues," Expert Syst. Appl., vol. 9, no. 1, pp. 35-40, Jan. 1995, doi: 10.1016/0957-4174(94)00046-X.
Lanziotti VS, Povoa P, Soares M, Silva JR, Barbosa AP, Salluh JI. Use of biomarkers in pediatric sepsis: literature review. Rev Bras Ter Intensiva. 2016 Oct-Dec;28(4):472-482. doi: 10.5935/0103-507X.20160080. — View Citation
Lippi G. Sepsis biomarkers: past, present and future. Clin Chem Lab Med. 2019 Aug 27;57(9):1281-1283. doi: 10.1515/cclm-2018-1347. No abstract available. — View Citation
Marshall JC, Reinhart K; International Sepsis Forum. Biomarkers of sepsis. Crit Care Med. 2009 Jul;37(7):2290-8. doi: 10.1097/CCM.0b013e3181a02afc. — View Citation
Mathias B, Mira JC, Larson SD. Pediatric sepsis. Curr Opin Pediatr. 2016 Jun;28(3):380-7. doi: 10.1097/MOP.0000000000000337. — View Citation
Patel K, McElvania E. Diagnostic Challenges and Laboratory Considerations for Pediatric Sepsis. J Appl Lab Med. 2019 Jan;3(4):587-600. doi: 10.1373/jalm.2017.025908. Epub 2018 Nov 21. — View Citation
Paxton C, Niculescu-Mizil A, Saria S. Developing predictive models using electronic medical records: challenges and pitfalls. AMIA Annu Symp Proc. 2013 Nov 16;2013:1109-15. eCollection 2013. — View Citation
R. Lachman, "Expert systems: A cognitive science perspective," Behav. Res. Methods, Instruments, Comput., 1989, doi: 10.3758/BF03205582.
R. M. RJ Rovetto, "Causality and the ontology of disease," Appl Ontol, vol. 10, no. 2, pp. 79-105, Sep. 2015, doi: 10.3233/ao-150147.
R. Matkar and A. Parab, "Ontology based expert systems - replication of human learning," Thinkquest~2010, pp. 43-47, 2011, doi: 10.1007/978-81-8489-989-4_7.
R. R. Starr and J. M. Parente De Oliveira, "Concept maps as the first step in an ontology construction method," Inf. Syst., 2013, doi: 10.1016/j.is.2012.05.010.
Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13. — View Citation
Scott HF, Brilli RJ, Paul R, Macias CG, Niedner M, Depinet H, Richardson T, Riggs R, Gruhler H, Larsen GY, Huskins WC, Balamuth F; Improving Pediatric Sepsis Outcomes (IPSO) Collaborative Investigators.. Evaluating Pediatric Sepsis Definitions Designed for Electronic Health Record Extraction and Multicenter Quality Improvement. Crit Care Med. 2020 Oct;48(10):e916-e926. doi: 10.1097/CCM.0000000000004505. — View Citation
Sepanski RJ, Godambe SA, Mangum CD, Bovat CS, Zaritsky AL, Shah SH. Designing a pediatric severe sepsis screening tool. Front Pediatr. 2014 Jun 16;2:56. doi: 10.3389/fped.2014.00056. eCollection 2014. — View Citation
Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, Huang DT, Kellum JA, Mi Q, Opal SM, Talisa V, van der Poll T, Visweswaran S, Vodovotz Y, Weiss JC, Yealy DM, Yende S, Angus DC. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019 May 28;321(20):2003-2017. doi: 10.1001/jama.2019.5791. — View Citation
Sinha P, Calfee CS, Delucchi KL. Practitioner's Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit Care Med. 2021 Jan 1;49(1):e63-e79. doi: 10.1097/CCM.0000000000004710. — View Citation
Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS; NHLBI ARDS Network. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 2018 Nov;44(11):1859-1869. doi: 10.1007/s00134-018-5378-3. Epub 2018 Oct 5. — View Citation
Taneja I, Reddy B, Damhorst G, Dave Zhao S, Hassan U, Price Z, Jensen T, Ghonge T, Patel M, Wachspress S, Winter J, Rappleye M, Smith G, Healey R, Ajmal M, Khan M, Patel J, Rawal H, Sarwar R, Soni S, Anwaruddin S, Davis B, Kumar J, White K, Bashir R, Zhu R. Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis. Sci Rep. 2017 Sep 7;7(1):10800. doi: 10.1038/s41598-017-09766-1. Erratum In: Sci Rep. 2019 Nov 19;9(1):17419. — View Citation
Weiss SL, Fitzgerald JC, Balamuth F, Alpern ER, Lavelle J, Chilutti M, Grundmeier R, Nadkarni VM, Thomas NJ. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014 Nov;42(11):2409-17. doi: 10.1097/CCM.0000000000000509. — View Citation
Weiss SL, Parker B, Bullock ME, Swartz S, Price C, Wainwright MS, Goodman DM. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med. 2012 Jul;13(4):e219-26. doi: 10.1097/PCC.0b013e31823c98da. — View Citation
Wiersema R, Jukarainen S, Vaara ST, Poukkanen M, Lakkisto P, Wong H, Linder A, van der Horst ICC, Pettila V. Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Crit Care. 2020 Apr 15;24(1):150. doi: 10.1186/s13054-020-02866-x. — View Citation
Williams JB, Ghosh D, Wetzel RC. Applying Machine Learning to Pediatric Critical Care Data. Pediatr Crit Care Med. 2018 Jul;19(7):599-608. doi: 10.1097/PCC.0000000000001567. — View Citation
Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, Pestrue J, Phillips M, Konye J, Penoza C, Ghous M, Singh K. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern Med. 2021 Aug 1;181(8):1065-1070. doi: 10.1001/jamainternmed.2021.2626. Erratum In: JAMA Intern Med. 2021 Aug 1;181(8):1144. — View Citation
Wong HR, Caldwell JT, Cvijanovich NZ, Weiss SL, Fitzgerald JC, Bigham MT, Jain PN, Schwarz A, Lutfi R, Nowak J, Allen GL, Thomas NJ, Grunwell JR, Baines T, Quasney M, Haileselassie B, Lindsell CJ. Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Sci Transl Med. 2019 Nov 13;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000. — View Citation
Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Sen A, Nowak J, Quasney M, Henricksen JW, Chopra A, Banschbach S, Beckman E, Harmon K, Lahni P, Lindsell CJ. The pediatric sepsis biomarker risk model. Crit Care. 2012 Oct 1;16(5):R174. doi: 10.1186/cc11652. — View Citation
Yamagata Y, Kozaki K, Imai T, Ohe K, Mizoguchi R. An ontological modeling approach for abnormal states and its application in the medical domain. J Biomed Semantics. 2014 May 21;5:23. doi: 10.1186/2041-1480-5-23. eCollection 2014. — View Citation
* Note: There are 42 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Effective Expert System-based Pediatric Sepsis Screening Tool (PSCT) | Over a usability test period, by emulation of the logic of experts in a screening tool that cam be continuously improved with experience, achieve a high level of ED workflow usability towards improved early recognition of IPSO sepsis, as perceived by practicing ED clinicians engaged in usability testing. | Final 3 months of study period. | |
Primary | High performance Expert System-based Pediatric Sepsis Screening Tool (PSCT) | To derive a high performing (e.g., sensitivity/specificity > 90%, PPV > 40%) PSCT to identify patients in the ED meeting IPSO sepsis criteria using early encounter data (e.g. upon receipt of biomarker data within 1st 1-3 hours of presentation). | Using "early data" following presentation to ED, e.g., upon receipt of biomarker data within 1st 3 hours of presentation) | |
Secondary | Effective sepsis phenotyping for personalized treatment | To show that combined PERSEVERE biomarker and EHR data as clustering features (e.g. using latent class analysis) enhances the detection of clinically useful prognostic phenotypes. | Features based on 1st 6 hours following presentation in patients diagnosed with sepsis and treatment protocol initiated. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |