Sepsis Clinical Trial
Official title:
Mitochondrial Dysfunction Contributes to Sepsis Induced Cardiac Dysfunction
This proposal hypothesizes that mitochondrial bioenergetics in the patient will correspond to mtDNA DAMPs levels and markers of inflammation. We predict these will serve as a prognostic indicator of Sepsis induced cardiac dysfunction (SICD) outcomes. Successful completion of these studies will provide a clearer understanding of the etiology of SICD development and therefore will have a high impact on biomedical research by identifying a new mechanism for understanding sepsis induced organ failure. Importantly, they will also provide a means for more directed and focused therapies, based upon individual bioenergetic/mitochondrial-mediated inflammation profiles. The combined, complementary expertise of the Mentor/co-primary investigators (Drs. Mathru and Ballinger) provide an excellent combination in both basic and translational research. They also have experience conducting studies and publications that will strengthen this research project. Importantly, the methods for characterizing mitochondrial bioenergetics from platelets were developed here at UAB, and methods for quantitative assessment of mtDNA DAMPs have been recently developed.
Sepsis induced cardiac dysfunction (SICD) occurs in ~ 50% of the patients with severe sepsis and septic shock, with significant implications for patient's survival. Currently, the precise pathophysiological mechanisms leading to cardiac dysfunction are not fully understood, nor is there an effective therapy for SICD except antibiotics, source control and restoration of hemodynamics to improve organ perfusion. SICD is characterized by minimal cell death, normal coronary perfusion, preserved tissue oxygen tension and reversibility in survivors. These characteristics point toward an oxygen utilization problem due to mitochondrial dysfunction; interestingly, sepsis mouse models demonstrated an improvement in cardiac function and decreased mortality when they were treated with mitochondrial targeted therapies, consistent with a growing body of evidence that suggests dysregulated mitochondrial metabolism plays a pivotal role in the pathogenesis of SICD. Ultrastructural and functional abnormalities of mitochondria have also been demonstrated in early sepsis, and reactive oxygen species (ROS) generated from mitochondria along with calcium overload trigger mitochondrial permeability transition pore (mPTP) opening which facilitates the externalization of mitochondrial DNA (mtDNA) fragments. These mtDNA fragments, or mtDNA Damage Associated Molecular Patterns (mtDNA DAMPs), activate innate immune response pathways - these pathways are well known to be significant components of intramyocardial inflammation. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |