Sepsis Clinical Trial
— ACORNOfficial title:
Effect of Antibiotic Choice On ReNal Outcomes (ACORN)
Verified date | December 2023 |
Source | Vanderbilt University Medical Center |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Sepsis is one of the most common causes of acute illness and death in the United States. Early, empiric broad-spectrum antibiotics are a mainstay of sepsis treatment. Two classes of antibiotics with activity against Pseudomonas, anti-pseudomonal cephalosporins and anti-pseudomonal penicillins, are commonly used for acutely ill adults with sepsis in current practice. Recent observational studies, however, have raised concern that anti-pseudomonal penicillins may cause renal toxicity. Anti-pseudomonal cephalosporins, by comparison, may be associated with a risk of neurotoxicity. Rigorous, prospective data regarding the comparative effectiveness and toxicity of these two classes of medications among acutely ill patients are lacking. The investigator propose a randomized trial comparing the impact of anti-pseudomonal cephalosporins and anti-pseudomonal penicillins on renal outcomes of acutely ill patients.
Status | Completed |
Enrollment | 2634 |
Est. completion date | October 21, 2022 |
Est. primary completion date | October 21, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Age = 18 years old - Located in a participating emergency department or medical intensive care unit - Less than 12 hours from presentation to study hospital - Treating clinician initiating an order for an anti-pseudomonal cephalosporin or anti-pseudomonal penicillin Exclusion Criteria: - Known receipt of > 1 dose of an anti-pseudomonal cephalosporin or anti-pseudomonal penicillin during the last 7 days - Current documented allergy to cephalosporins or penicillin - Known to be a prisoner - Treating clinicians feel that either an anti-pseudomonal cephalosporin or anti-pseudomonal penicillin is required or contraindicated for the optimal treatment of the patient, including for more directed antibiotic therapy against known prior resistant infections or suspected sepsis with an associated central nervous system infection |
Country | Name | City | State |
---|---|---|---|
United States | Vanderbilt University Medical Center | Nashville | Tennessee |
Lead Sponsor | Collaborator |
---|---|
Vanderbilt University Medical Center |
United States,
Abanades S, Nolla J, Rodriguez-Campello A, Pedro C, Valls A, Farre M. Reversible coma secondary to cefepime neurotoxicity. Ann Pharmacother. 2004 Apr;38(4):606-8. doi: 10.1345/aph.1D322. Epub 2004 Feb 24. — View Citation
Arnaud FCS, Liborio AB. Attributable nephrotoxicity of vancomycin in critically ill patients: a marginal structural model study. J Antimicrob Chemother. 2020 Apr 1;75(4):1031-1037. doi: 10.1093/jac/dkz520. — View Citation
Balderia PG, Chandorkar A, Kim Y, Patnaik S, Sloan J, Newman GC. Dosing Cefepime for Renal Function Does Not Completely Prevent Neurotoxicity in a Patient With Kidney Transplant. J Patient Saf. 2018 Jun;14(2):e33-e34. doi: 10.1097/PTS.0000000000000225. — View Citation
Bellos I, Karageorgiou V, Pergialiotis V, Perrea DN. Acute kidney injury following the concurrent administration of antipseudomonal beta-lactams and vancomycin: a network meta-analysis. Clin Microbiol Infect. 2020 Jun;26(6):696-705. doi: 10.1016/j.cmi.2020.03.019. Epub 2020 Mar 25. — View Citation
Buckley MS, Hartsock NC, Berry AJ, Bikin DS, Richards EC, Yerondopoulos MJ, Kobic E, Wicks LM, Hammond DA. Comparison of acute kidney injury risk associated with vancomycin and concomitant piperacillin/tazobactam or cefepime in the intensive care unit. J Crit Care. 2018 Dec;48:32-38. doi: 10.1016/j.jcrc.2018.08.007. Epub 2018 Aug 11. — View Citation
Carreno J, Smiraglia T, Hunter C, Tobin E, Lomaestro B. Comparative incidence and excess risk of acute kidney injury in hospitalised patients receiving vancomycin and piperacillin/tazobactam in combination or as monotherapy. Int J Antimicrob Agents. 2018 Nov;52(5):643-650. doi: 10.1016/j.ijantimicag.2018.08.001. Epub 2018 Aug 10. — View Citation
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018 Jul 7;392(10141):75-87. doi: 10.1016/S0140-6736(18)30696-2. Epub 2018 Jun 21. — View Citation
Damiani E, Donati A, Serafini G, Rinaldi L, Adrario E, Pelaia P, Busani S, Girardis M. Effect of performance improvement programs on compliance with sepsis bundles and mortality: a systematic review and meta-analysis of observational studies. PLoS One. 2015 May 6;10(5):e0125827. doi: 10.1371/journal.pone.0125827. eCollection 2015. — View Citation
Downes KJ, Cowden C, Laskin BL, Huang YS, Gong W, Bryan M, Fisher BT, Goldstein SL, Zaoutis TE. Association of Acute Kidney Injury With Concomitant Vancomycin and Piperacillin/Tazobactam Treatment Among Hospitalized Children. JAMA Pediatr. 2017 Dec 4;171(12):e173219. doi: 10.1001/jamapediatrics.2017.3219. Epub 2017 Dec 4. — View Citation
Filippone EJ, Kraft WK, Farber JL. The Nephrotoxicity of Vancomycin. Clin Pharmacol Ther. 2017 Sep;102(3):459-469. doi: 10.1002/cpt.726. Epub 2017 Jun 5. — View Citation
Gomez H, Kellum JA. Sepsis-induced acute kidney injury. Curr Opin Crit Care. 2016 Dec;22(6):546-553. doi: 10.1097/MCC.0000000000000356. — View Citation
Hammond DA, Smith MN, Li C, Hayes SM, Lusardi K, Bookstaver PB. Systematic Review and Meta-Analysis of Acute Kidney Injury Associated with Concomitant Vancomycin and Piperacillin/tazobactam. Clin Infect Dis. 2017 Mar 1;64(5):666-674. doi: 10.1093/cid/ciw811. Epub 2016 Dec 10. — View Citation
Hammond DA, Smith MN, Painter JT, Meena NK, Lusardi K. Comparative Incidence of Acute Kidney Injury in Critically Ill Patients Receiving Vancomycin with Concomitant Piperacillin-Tazobactam or Cefepime: A Retrospective Cohort Study. Pharmacotherapy. 2016 May;36(5):463-71. doi: 10.1002/phar.1738. Epub 2016 Apr 1. — View Citation
Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honore PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015 Aug;41(8):1411-23. doi: 10.1007/s00134-015-3934-7. Epub 2015 Jul 11. — View Citation
Kalligeros M, Karageorgos SA, Shehadeh F, Zacharioudakis IM, Mylonakis E. The association of acute kidney injury with the concomitant use of vancomycin and piperacillin/tazobactam in children: A systematic review and meta-analysis. Antimicrob Agents Chemother. 2019 Sep 9;63(12):e01572-19. doi: 10.1128/AAC.01572-19. Epub 2019 Oct 7. — View Citation
Kang S, Park J, Yu YM, Park MS, Han E, Chang MJ. Comparison of acute kidney injury and clinical prognosis of vancomycin monotherapy and combination therapy with beta-lactams in the intensive care unit. PLoS One. 2019 Jun 5;14(6):e0217908. doi: 10.1371/journal.pone.0217908. eCollection 2019. — View Citation
Liu VX, Fielding-Singh V, Greene JD, Baker JM, Iwashyna TJ, Bhattacharya J, Escobar GJ. The Timing of Early Antibiotics and Hospital Mortality in Sepsis. Am J Respir Crit Care Med. 2017 Oct 1;196(7):856-863. doi: 10.1164/rccm.201609-1848OC. — View Citation
Luther MK, Timbrook TT, Caffrey AR, Dosa D, Lodise TP, LaPlante KL. Vancomycin Plus Piperacillin-Tazobactam and Acute Kidney Injury in Adults: A Systematic Review and Meta-Analysis. Crit Care Med. 2018 Jan;46(1):12-20. doi: 10.1097/CCM.0000000000002769. — View Citation
Molina KC, Barletta JF, Hall ST, Yazdani C, Huang V. The Risk of Acute Kidney Injury in Critically Ill Patients Receiving Concomitant Vancomycin With Piperacillin-Tazobactam or Cefepime. J Intensive Care Med. 2020 Dec;35(12):1434-1438. doi: 10.1177/0885066619828290. Epub 2019 Feb 10. — View Citation
O'Callaghan K, Hay K, Lavana J, McNamara JF. Acute kidney injury with combination vancomycin and piperacillin-tazobactam therapy in the ICU: A retrospective cohort study. Int J Antimicrob Agents. 2020 Jul;56(1):106010. doi: 10.1016/j.ijantimicag.2020.106010. Epub 2020 May 12. — View Citation
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6. Epub 2017 Jan 18. — View Citation
Rutter WC, Burgess DR, Talbert JC, Burgess DS. Acute kidney injury in patients treated with vancomycin and piperacillin-tazobactam: A retrospective cohort analysis. J Hosp Med. 2017 Feb;12(2):77-82. doi: 10.12788/jhm.2684. — View Citation
Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med. 2009 Sep;37(9):2552-8. doi: 10.1097/CCM.0b013e3181a5906f. — View Citation
Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005 Aug 17;294(7):813-8. doi: 10.1001/jama.294.7.813. — View Citation
* Note: There are 24 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Post-Emergency Department Disposition | Patient disposition (ex. floor unit or intensive care unit) at day 14 post-enrollment from the emergency department. | 14 days post-enrollment | |
Primary | Acute Kidney Injury (AKI) Ordinal Scale | Acute Kidney Injury Score between randomization and day 14. The acute kidney injury score is an ordinal outcome containing the stages of AKI as defined by Kidney Disease: Improving Global Outcomes (KDIGO) creatinine criteria, new renal replacement therapy (RRT), and death:
0 = No AKI = Stage 1 AKI (Creatinine increase by 1.5-1.9 times baseline OR increase by >= 0.3 mg/dL) = Stage 2 AKI (Creatinine increase by 2.0-2.9 times baseline) = Stage 3 AKI (Creatinine increase by >= 3.0 times baseline OR increase to >= 4.0 mg/dL OR New RRT) = Death |
14 days post-enrollment | |
Secondary | Major Adverse Kidney Events Within 14 Days (MAKE14) | Composite outcome of death within 14 days, new renal replacement therapy within 14 days, or stage 2 or higher AKI at day 14 | 14 days post-enrollment | |
Secondary | Delirium and Coma-Free Days to Day 14 | The number of days alive and free of coma and delirium in the 14 days after enrollment | 14 days post-enrollment |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |