Sepsis Clinical Trial
— RRIBIOSAKIOfficial title:
Renal Arterial Resistive Index Versus Novel Serum and Urinary Biomarkers for Early Prediction of Sepsis Associated-acute Kidney Injury in Critically Ill Patients
NCT number | NCT03799159 |
Other study ID # | RRIBIOSAKI |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | May 15, 2019 |
Est. completion date | February 28, 2021 |
Verified date | February 2021 |
Source | Alexandria University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Populations at high risk of Sepsis-Associated Acute Kidney Injury (SA-AKI) have been identified. Sources of sepsis, in particular, bloodstream infection, abdominal and genitourinary sepsis, and infective endocarditis, are associated with a higher likelihood of developing AKI. Similar to the poor outcome of patients with sepsis, delayed administration of appropriate antimicrobial therapy was shown to be an independent predictor of the development of AKI. Incremental delays in antimicrobial delivery after the onset of hypotension showed a direct relationship with the development of AKI. The need for sensitive, simple and time-applicable biomarker to predict AKI development after renal insult is urgent. Serum creatinine (sCr) and urea are used routinely for the diagnosis of AKI. However, these parameters are not accurate for the diagnosis of AKI. Cystatin C. (CysC) is suggested to be a good biomarker because of its constant rate of production, almost filtered by glomeruli (99%), has no significant protein binding and not secreted by renal tubule. Neutrophil gelatinase-associated lipocalin (NGAL) is recently identified and extensively investigated as a most promising early marker of AKI. Urinary NGAL is not only effective in detection of AKI but also its degree of expression might distinguish among AKI, prerenal azotemia and chronic kidney disease, and it is detectable before the accumulation of serum creatinine. Ultrasonography (US) is used routinely to assess renal morphology. Renal Resistive Index (RRI) is a non-invasive Doppler-measured parameter that is directly correlated with intra-renal arterial resistance. RRI is defined as [(peak systolic velocity - end diastolic velocity)/ peak systolic velocity]. It theoretically ranges from 0 to 1 and it is normally lower than 0.7 with age differences. RRI calculation was found to be useful as an early indicator of the vascular resistance changes and in the determination of the optimal systemic hemodynamics required for renal perfusion. The aim of this study is to compare the ability of arterial renal resistive index (RRI), serum and urinary neutrophil gelatinase-associated lipocalin (NGAL), Cystatin C (CysC) in early diagnosis and predicting the persistence of acute kidney injury in septic patients.
Status | Completed |
Enrollment | 75 |
Est. completion date | February 28, 2021 |
Est. primary completion date | February 28, 2021 |
Accepts healthy volunteers | |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Adult patients (aged above 18 years) recently admitted with sepsis Exclusion Criteria: - Pregnant Females - Patients with renal transplant. - Patients with End Stage Renal Disease (ESRD). - Patients with Chronic Kidney Disease (CKD) known with history, laboratory or ultrasonographic evaluation with chronic nephropathic changes. - Patients with renal artery stenosis. - Patients with obstructive uropathy. |
Country | Name | City | State |
---|---|---|---|
Egypt | Alexandria Main University Hospital | Alexandria |
Lead Sponsor | Collaborator |
---|---|
Islam Elsayed Mohamed Ahmed |
Egypt,
Bagshaw SM, George C, Bellomo R; ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12(2):R47. doi: 10.1186/cc6863. Epub 2008 Apr 10. — View Citation
Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, Ellis P, Guzman J, Marshall J, Parrillo JE, Skrobik Y, Kumar A; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009 May;35(5):871-81. doi: 10.1007/s00134-008-1367-2. Epub 2008 Dec 9. — View Citation
Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007 May;2(3):431-9. Epub 2007 Mar 21. — View Citation
Bouglé A, Duranteau J. Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance. Contrib Nephrol. 2011;174:89-97. doi: 10.1159/000329243. Epub 2011 Sep 9. Review. — View Citation
Haase-Fielitz A, Bellomo R, Devarajan P, Bennett M, Story D, Matalanis G, Frei U, Dragun D, Haase M. The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury. Nephrol Dial Transplant. 2009 Nov;24(11):3349-54. doi: 10.1093/ndt/gfp234. Epub 2009 May 27. — View Citation
Merrikhi A, Gheissari A, Mousazadeh H. Urine and serum neutrophil gelatinase-associated lipocalin cut-off point for the prediction of acute kidney injury. Adv Biomed Res. 2014 Jan 27;3:66. doi: 10.4103/2277-9175.125847. eCollection 2014. — View Citation
Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005 Apr 2-8;365(9466):1231-8. — View Citation
Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005 Mar;115(3):610-21. — View Citation
Nickolas TL, O'Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Giglio J, Devarajan P, Barasch J. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008 Jun 3;148(11):810-9. — View Citation
Schnell D, Darmon M. Renal Doppler to assess renal perfusion in the critically ill: a reappraisal. Intensive Care Med. 2012 Nov;38(11):1751-60. doi: 10.1007/s00134-012-2692-z. Epub 2012 Sep 22. Review. — View Citation
Schnell D, Deruddre S, Harrois A, Pottecher J, Cosson C, Adoui N, Benhamou D, Vicaut E, Azoulay E, Duranteau J. Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock. 2012 Dec;38(6):592-7. doi: 10.1097/SHK.0b013e318271a39c. — View Citation
Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis. 2011 Sep;58(3):356-65. doi: 10.1053/j.ajkd.2011.02.389. Epub 2011 May 20. Review. Erratum in: Am J Kidney Dis. 2012 Apr;59(4):590-2. — View Citation
Zwiers AJ, de Wildt SN, van Rosmalen J, de Rijke YB, Buijs EA, Tibboel D, Cransberg K. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study. Crit Care. 2015 Apr 21;19:181. doi: 10.1186/s13054-015-0910-0. — View Citation
* Note: There are 13 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Acute Kidney Injury | AKI is defined according to KDIGO (Kidney Disease Improving Global Outcomes) | 7 days from inclusion | |
Primary | Transient Acute Kidney Injury | Transient AKI is defined as AKI with a cause of renal hypoperfusion and recovery within 3 days after inclusion. Recovery from AKI is defined as urine output normalization and/or serum creatinine decrease by 50% and/or serum creatinine normalization to its measured or estimated baseline level. | 7 days from inclusion | |
Primary | Persistent Acute Kidney Injury | Persistent AKI is defined as persistent serum creatinine rise or oliguria after 3 days. | 7 days from inclusion | |
Secondary | Mortality | All cause 28-days mortality | 28 days from inclusion |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |