Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02370186
Other study ID # UFJ 2014-193
Secondary ID IRB201702454
Status Completed
Phase
First received
Last updated
Start date February 2015
Est. completion date March 12, 2017

Study information

Verified date January 2021
Source University of Florida
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Severe sepsis results in over 300,000 Emergency Department (ED) visits and 215,000 deaths annually in the US. Currently there are no effective drug therapies for sepsis. High density lipoprotein (HDL) has antioxidant, anti-inflammatory, and antithrombotic properties and is protective in sepsis. Its functions in sepsis are primarily mediated by its main apolipoprotein, Apo-A1, that: 1) neutralize potent bacterial toxins, 2) protect blood vessel walls from damage, 3) prevent tissue damage through antioxidant properties, and 4) mediate thymocyte apoptosis (critical for survival) and endogenous corticosteroid release. However, recent literature presents inconsistent data on HDL functionality and shows that HDL becomes non-functional during acute inflammatory states called dysfunctional HDL (Dys-HDL). Several causes for Dys-HDL have been hypothesized including the presence of Apo A1 polymorphisms, which may worsen the pathologic inflammatory response in sepsis and have been demonstrated in early sepsis, making Dys-HDL an unstudied potential early marker. This project aims to: 1) determine the presence of Dys-HDL in adult patients with early severe sepsis who present to the ED (Dys-HDL will be tested using a novel cell free assay and HDL Inflammatory Index will be measured), and 2) examine the relationship between Dys-HDL and cumulative organ dysfunction via Sequential Organ Failure Assessment (SOFA) score. Results of this study could establish Dys-HDL as an early disease marker for sepsis which is influential in the development of sepsis-induced organ dysfunction.


Description:

Sepsis is a systemic inflammatory response to infection, which leads to acute organ dysfunction and shock. Current therapies are aimed at normalizing hemodynamic parameters during early sepsis resuscitation to reduce mortality. The investigators hypothesize that future strategies should be personalized, and should target the mediators of the septic response on an individual patient basis. One of these mediators is HDL which works by facilitating clearance of bacterial toxins, maintaining the integrity of the endothelium, and preventing inflammation, a function performed by Apo-A1. The association of HDL with cardiovascular health has been well-studied in the Caucasian and Asian populations, where research has demonstrated that HDL can become pro-inflammatory and thus may not perform its functions of being anti-inflammatory, anti-thrombotic and anti-oxidant. Such HDL is called Dys-HDL. Dys-HDL or pro-inflammatory HDL may play a pivotal role in sepsis, an area that has not been fully studied. The mechanism by which HDL becomes dysfunctional is one of debate, but the main hypothesis is through polymorphisms of Apo-A1, possibly via the myeloperoxidase enzyme, and each polymorphism produces different HDL levels and activity. These alterations can lead to increased susceptibility to septic death due to inability to neutralize lipopolysaccharide, loss of thymocyte apoptosis (critical for protection against sepsis) and endogenous corticosteroid release, and loss of the ability to preserve HDLs antioxidant properties. Dys-HDL has also been demonstrated in early sepsis and may serve as a potential early disease marker. For these reasons, the investigators believe that Dys-HDL may play a pivotal role in the sepsis cascade which leads to organ dysfunction and death. Aim 1. Determine the presence of Dys-HDL in adult patients with early severe sepsis who present to the ED. Aim 2. Examine the relationship between Dys-HDL and cumulative organ dysfunction as measured by the sequential organ failure assessment (SOFA) score, a validated measure of organ dysfunction in severe sepsis.


Recruitment information / eligibility

Status Completed
Enrollment 110
Est. completion date March 12, 2017
Est. primary completion date March 12, 2017
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: 1. Patients 18 years and older with at least 2 of 4 SIRS criteria plus: - lactate = 2 mg/dL, AND - SOFA Score = 4* (see Appendix A), or Exclusion Criteria: - Patients <18 years of age - Pregnant subjects - No valid consent available - Familial/genetic disorders of lipid metabolism

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
United States UF Health Jacksonville Jacksonville Florida

Sponsors (2)

Lead Sponsor Collaborator
University of Florida University of Mississippi Medical Center

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Dys-HDL in adult patients with early severe sepsis Measure Dys-HDL in adult patients with early severe sepsis who present to the ED. 48 hours
Secondary Relationship between Dys-HDL and Cumulative Organ Dysfunction Examine the relationship between Dys-HDL and cumulative organ dysfunction as measured by the sequential organ failure assessment (SOFA) score. 48 hours
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3