Clinical Trials Logo

Clinical Trial Summary

Deficits in skeletal muscle function exist during aging and muscular dystrophy, and suboptimal function has been related to factors such as atrophy, excessive inflammation and fibrosis. Sarcopenia is the age-related loss of skeletal muscle mass and function. It is now recognised as a major clinical problem for older people and research in the area is expanding exponentially. This interest stems from the fact that sarcopenia is both common and associated with serious health consequences in terms of frailty, disability, morbidity and mortality. The age-related loss of human skeletal muscle mass is due to a decrease in myofibre size and number with the loss of both fast and slow type myofibres, although the loss of fast myofibres tends to start earlier, at ∼70 years. Many factors influence the decrease in muscle mass. A significant contributor is an anabolic resistance of older skeletal muscle to protein nutrition as seen during immobilisation which can be ameliorated at least in part by resistance exercise and dietary supplementation. Other intensive areas of research are related to the loss of innervation and oxidative damage. Moreover, ineffective muscle regeneration underlies each condition and has been attributed to a deficit in myogenic potential of resident stem cells or satellite cells. It is now widely accepted that satellite cells, and generally adult stem cells, are normally quiescent and tend to reside in hypoxic areas of the tissue to preserve their undifferentiated state. To govern these processes, cells have developed a very complex machinery that is mainly regulated by a group of transcription factors known as hypoxia-inducible factors (HIFs). In particular, several observations support the idea that oxygen deprivation and HIF-1a may play a key role during ischemia to activate the regeneration process, which, after an initial hypoxic insult, needs to proceed under normoxia. On these bases, in this study we will investigate the role of HIF-1a in skeletal atrophy during aging.


Clinical Trial Description

Deficits in skeletal muscle function exist during aging and muscular dystrophy, and suboptimal function has been related to factors such as atrophy, excessive inflammation and fibrosis. Sarcopenia is the age-related loss of skeletal muscle mass and function. It is now recognised as a major clinical problem for older people and research in the area is expanding exponentially. This interest stems from the fact that sarcopenia is both common and associated with serious health consequences in terms of frailty, disability, morbidity and mortality. The age-related loss of human skeletal muscle mass is due to a decrease in myofibre size and number with the loss of both fast and slow type myofibres, although the loss of fast myofibres tends to start earlier, at ∼70 years. Many factors influence the decrease in muscle mass. A significant contributor is an anabolic resistance of older skeletal muscle to protein nutrition as seen during immobilisation which can be ameliorated at least in part by resistance exercise and dietary supplementation. Other intensive areas of research are related to the loss of innervation and oxidative damage. Moreover, ineffective muscle regeneration underlies each condition and has been attributed to a deficit in myogenic potential of resident stem cells or satellite cells. It is now widely accepted that satellite cells, and generally adult stem cells, are normally quiescent and tend to reside in hypoxic areas of the tissue to preserve their undifferentiated state. To govern these processes, cells have developed a very complex machinery that is mainly regulated by a group of transcription factors known as hypoxia-inducible factors (HIFs). In particular, several observations support the idea that oxygen deprivation and HIF-1a may play a key role during ischemia to activate the regeneration process, which, after an initial hypoxic insult, needs to proceed under normoxia. On these bases, in this study we will investigate the role of HIF-1a in skeletal atrophy during aging.

In particular, we will isolate satellite cells from muscular biopsies harvested from old sarcopenic patients and from young patients. The, we will measure HIF-1a levels and we will compare them. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03371134
Study type Observational
Source Istituto Ortopedico Galeazzi
Contact Laura Mangiavini, Dr
Phone 00390266214930
Email laura.mangiavini@grupposandonato.it
Status Not yet recruiting
Phase N/A
Start date January 10, 2018
Completion date July 26, 2020

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06287502 - Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis N/A
Recruiting NCT05063279 - RELIEF - Resistance Training for Life N/A
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Recruiting NCT06143592 - Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly N/A
Terminated NCT04350762 - Nutritional Supplementation in the Elderly With Weight Loss N/A
Enrolling by invitation NCT05953116 - Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study N/A
Recruiting NCT04028206 - Resistance Exercise or Vibration With HMB for Sarcopenia N/A
Enrolling by invitation NCT03297632 - Improving Muscle Strength, Mass and Physical Function in Older Adults N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A
Completed NCT03234920 - Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation N/A
Recruiting NCT03998202 - Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
Recruiting NCT04717869 - Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
Completed NCT05497687 - Strength-building Lifestyle-integrated Intervention N/A
Completed NCT03119610 - The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity Phase 1/Phase 2
Recruiting NCT05711095 - The Anabolic Properties of Fortified Plant-based Protein in Older People N/A
Recruiting NCT05008770 - Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
Not yet recruiting NCT05860556 - Sustainable Eating Pattern to Limit Malnutrition in Older Adults
Recruiting NCT04545268 - Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance N/A
Recruiting NCT04522609 - Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant N/A
Recruiting NCT03160326 - The QUALITY Vets Project: Muscle Quality and Kidney Disease