Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01680146
Other study ID # METC 12-3-030
Secondary ID
Status Completed
Phase N/A
First received August 21, 2012
Last updated November 27, 2014
Start date October 2012
Est. completion date December 2012

Study information

Verified date November 2014
Source Maastricht University Medical Center
Contact n/a
Is FDA regulated No
Health authority Netherlands: The Central Committee on Research Involving Human Subjects (CCMO)
Study type Interventional

Clinical Trial Summary

Rationale: The progressive loss of skeletal muscle mass with aging, or sarcopenia, has a major impact on our healthcare system due to increased morbidity and greater need for hospitalization and/or institutionalization. One way to prevent skeletal muscle loss is to improve dietary intake of the elderly. It has already been shown that ingestion of dietary protein stimulates muscle protein synthesis and inhibits muscle protein breakdown, resulting in an overall positive net protein balance. However, the impact of fat (as part of the meal) on dietary protein-induced muscle protein synthesis remains largely unknown. Based on previous studies by other research groups, we hypothesize that fat further stimulates the muscle anabolic response to protein ingestion.

Objective: The primary objective of this study is to investigate the effect of a single meal-like amount of protein with or without fat on postprandial muscle protein synthesis rates in healthy elderly men. Furthermore, as a secondary objective, we will assess digestion and absorption kinetics.

Study design: double-blind randomized intervention study Study population: 24 healthy elderly men (55-85 y) Intervention: one group (n=12) will consume a test beverage of 350 mL containing 20 g of intrinsically labeled casein, and the other group (n=12) will consume a beverage of the same volume containing 20 g of casein plus 20 g of fat.

Main study parameters/endpoints: Primary endpoint: muscle protein synthesis rates. Secondary endpoint: digestion and absorption kinetics.


Description:

The progressive loss of skeletal muscle mass with aging, or sarcopenia, has a major impact on our healthcare system due to increased morbidity and greater need for hospitalization and/or institutionalization. The age-related loss of skeletal muscle mass is facilitated by a combination of factors, which include a less than optimal diet and a sedentary lifestyle. These factors contribute to a disruption in the regulation of skeletal muscle protein turnover, leading to an imbalance between muscle protein synthesis (MPS) and degradation. One way to overcome this problem is to improve dietary intake of the elderly. It has been well established that nutrient intake greatly affects protein turnover in skeletal muscle tissue.

Ingestion of dietary protein stimulates MPS rates and inhibits muscle protein breakdown rates, resulting in an overall positive net protein balance in both the young and elderly. However, it is not clear what the impact is of co-ingestion of other macronutrients on digestion and absorption kinetics or MPS rates in the healthy young or the elderly. We have recently conducted a study to examine the impact of carbohydrate co-ingestion on postprandial MPS in the healthy young and old. Indeed, preliminary results show that carbohydrate co-ingestion stimulates protein synthesis.

Interestingly, very little is known about the impact of fat co-ingestion with protein on the stimulation of post-prandial MPS rates. What is noteworthy is that Elliot et al. investigated the effect of whole milk ingestion on net muscle protein balance after resistance exercise using an arteriovenous balance approach. Ingestion of whole milk (containing 50 en% fats) stimulated the post-exercise net uptake of phenylalanine and threonine to a greater extent than ingestion of fat-free milk (containing 6 en% fat). Although, amino acid uptake is indicative of 'muscle anabolism', it is not a direct measure of MPS so no firm conclusions can be deduce from this work. Furthermore, milk also contains a certain amount of carbohydrates (fat-free milk 55 en% and whole milk 30 en%), which does not allow for direct assessment of fat co-ingestion per se.

Certainly, other studies have investigated the effect of long term fatty acid intake, using direct incorporation methods, on the MPS rates. For example, long term omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation increased feeding-mediated MPS rates in young, middle-aged, and older adults. The mechanism(s) underpinning the enhanced effect of n-3 PUFA supplementation on post-prandial MPS rates to dietary protein are not well defined. It has been speculated that the enhanced feeding-effect of n-3 PUFA on postprandial MPS rates is due to remodeling of the sarcolemma to include a greater n-3 PUFA content, and ultimately enhances insulin's action on muscle protein metabolism. This is clearly a long term effect, but what about the acute effects of fat co-ingestion on postprandial MPS rates? Katsanos et al. found that elevated plasma fatty acid concentrations did not interfere with the post-prandial stimulation of MPS. However, subjects ingested a single bolus of essential amino acids while receiving fatty acid infusion, which clearly does not reflect a 'real world' setting. In the end, there is reason to believe that the presence of fat in a meal further stimulates the muscle anabolic response to meal ingestion. However, fat intake may also modulate gastric emptying and dietary protein digestion and absorption kinetics. To date, the acute (not long-term supplementation) impact of fat in a meal on post-prandial muscle protein anabolism and digestion and absorption kinetics remains completely unexplored, and thus we can only speculate on the impact that fat co-ingestion has on postprandial MPS rates.

In the present study we will investigate the effect of a single meal-like amount of protein with or without fat on postprandial MPS in healthy elderly men. Furthermore, we will assess digestion and absorption kinetics. The use of intrinsically labeled casein will allows us determine de novo MPS from amino acids that come available through the test beverage.


Recruitment information / eligibility

Status Completed
Enrollment 24
Est. completion date December 2012
Est. primary completion date December 2012
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Male
Age group 55 Years to 85 Years
Eligibility Inclusion Criteria:

- Healthy males

- Age between 55 and 85

- BMI < 30 kg/m2

Exclusion Criteria:

- Glucose intolerance

- Milk and/or fat intolerance

- Smoking

- Diagnosed GI tract diseases

- Arthritic conditions

- A history of neuromuscular problems

- Any medications known to affect protein metabolism (i.e. corticosteroids, non-steroidal anti-inflammatories, or prescription strength acne medications).

- Use of anticoagulants

- Participation in exercise program

- Hypertension, high blood pressure that is above 140/90 mmHg.

Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator, Outcomes Assessor), Primary Purpose: Prevention


Related Conditions & MeSH terms


Intervention

Dietary Supplement:
PRO+FAT

PRO


Locations

Country Name City State
Netherlands Maastricht University Maastricht Limburg

Sponsors (1)

Lead Sponsor Collaborator
Maastricht University Medical Center

Country where clinical trial is conducted

Netherlands, 

Outcome

Type Measure Description Time frame Safety issue
Primary muscle protein synthesis (MPS) rates The main study endpoint is muscle protein synthesis (MPS) rates. In order to determine the MPS, the following parameters will be measured:
Muscle protein-bound L-[1-13C]-phenylalanine, L-[ring-2H5]-phenylalanine, and L-[1-13C]-leucine enrichment (expressed as MPE)
Plasma L-[1-13C]-phenylalanine and L-[1-13C]-KIC enrichment (expressed as MPE)
Muscle free (intracellular) L-[1-13C]-phenylalanine enrichment (expressed as MPE)
1 day No
Secondary protein digestion and absorption kinetics Secondary endpoints include protein digestion and absorption kinetics. Therefore, the following parameters will be measured:
Plasma phenylalanine, tyrosine, and leucine concentration (expressed as µmol/L)
Plasma enrichments of:
L-[1-13C]-phenylalanine
L-[1-13C]-tyrosine
L-[1-13C]-leucine
L-[ring-2H5]-phenylalanine
L-[ring-2H4]-tyrosine
L-[ring-2H2]-tyrosine
1 day No
Secondary whole-body protein metabolism Secondary endpoints include whole-body protein metabolism, which will be calculated based on protein digestion and absorption kinetics. 1 day No
Secondary Glucose concentrations During the experimental trial, we will measure glucose concentrations in the obtained plasma samples. 1 day No
Secondary Insulin concentrations During the experimental trial, we will measure insulin concentrations in the obtained plasma samples. 1 day No
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06287502 - Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis N/A
Recruiting NCT05063279 - RELIEF - Resistance Training for Life N/A
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Recruiting NCT06143592 - Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly N/A
Terminated NCT04350762 - Nutritional Supplementation in the Elderly With Weight Loss N/A
Enrolling by invitation NCT05953116 - Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study N/A
Recruiting NCT04028206 - Resistance Exercise or Vibration With HMB for Sarcopenia N/A
Enrolling by invitation NCT03297632 - Improving Muscle Strength, Mass and Physical Function in Older Adults N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A
Completed NCT03234920 - Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation N/A
Recruiting NCT03998202 - Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
Recruiting NCT04717869 - Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
Completed NCT05497687 - Strength-building Lifestyle-integrated Intervention N/A
Completed NCT03119610 - The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity Phase 1/Phase 2
Recruiting NCT05711095 - The Anabolic Properties of Fortified Plant-based Protein in Older People N/A
Recruiting NCT05008770 - Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
Not yet recruiting NCT05860556 - Sustainable Eating Pattern to Limit Malnutrition in Older Adults
Recruiting NCT04545268 - Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance N/A
Recruiting NCT04522609 - Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant N/A
Recruiting NCT03160326 - The QUALITY Vets Project: Muscle Quality and Kidney Disease

External Links