Rotator Cuff Tears Clinical Trial
Official title:
A Prospective Randomized Multicenter Evaluation of Rotator Cuff Healing Using a Nanofiber Scaffold in Patients Greater Than 55 Years
Verified date | November 2023 |
Source | Nanofiber Solutions |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Randomized controlled trial of patients over the age of 55 treated with and without a nanofiber scaffold during rotator cuff repair.
Status | Active, not recruiting |
Enrollment | 91 |
Est. completion date | September 30, 2024 |
Est. primary completion date | August 31, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 55 Years and older |
Eligibility | Inclusion Criteria: 1. Age 55 and older 2. Able to provide informed consent 3. Primary diagnosis of rotator cuff tear Exclusion Criteria: 1. Revision rotator cuff surgery 2. Partial thickness rotator cuff tears 3. Massive (greater than 5cm) rotator cuff tears 4. Patients with current tobacco history |
Country | Name | City | State |
---|---|---|---|
United States | The Christ Hospital & The Lindner Reseach Center at The Christ Hospital | Cincinnati | Ohio |
United States | Central Indiana Orthopedics | Fishers | Indiana |
United States | Steadman Hawkins Clinic of the Carolinas - Patewood | Greenville | South Carolina |
United States | Associated Orthopedists of Detroit | Saint Clair Shores | Michigan |
Lead Sponsor | Collaborator |
---|---|
Atreon Orthopedics |
United States,
Agudelo-Garcia PA, De Jesus JK, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S, Li PK, Lannutti JJ, Johnson JK, Lawler SE, Viapiano MS. Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia. 2011 Sep;13(9):831-40. doi: 10.1593/neo.11612. — View Citation
Akpinar S, Uysal M, Pourbagher MA, Ozalay M, Cesur N, Hersekli MA. Prospective evaluation of the functional and anatomical results of arthroscopic repair in small and medium-sized full-thickness tears of the supraspinatus tendon. Acta Orthop Traumatol Turc. 2011;45(4):248-53. doi: 10.3944/AOTT.2011.2455. — View Citation
Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg. 2006 May-Jun;15(3):290-9. doi: 10.1016/j.jse.2005.09.017. — View Citation
Boehm TD, Werner A, Radtke S, Mueller T, Kirschner S, Gohlke F. The effect of suture materials and techniques on the outcome of repair of the rotator cuff: a prospective, randomised study. J Bone Joint Surg Br. 2005 Jun;87(6):819-23. doi: 10.1302/0301-620X.87B6.15638. — View Citation
Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am. 2005 Jun;87(6):1229-40. doi: 10.2106/JBJS.D.02035. — View Citation
Charousset C, Grimberg J, Duranthon LD, Bellaiche L, Petrover D. Can a double-row anchorage technique improve tendon healing in arthroscopic rotator cuff repair?: A prospective, nonrandomized, comparative study of double-row and single-row anchorage techniques with computed tomographic arthrography tendon healing assessment. Am J Sports Med. 2007 Aug;35(8):1247-53. doi: 10.1177/0363546507301661. Epub 2007 Apr 23. — View Citation
Cho NS, Rhee YG. The factors affecting the clinical outcome and integrity of arthroscopically repaired rotator cuff tears of the shoulder. Clin Orthop Surg. 2009 Jun;1(2):96-104. doi: 10.4055/cios.2009.1.2.96. Epub 2009 May 30. — View Citation
Deutsch A, Kroll DG, Hasapes J, Staewen RS, Pham C, Tait C. Repair integrity and clinical outcome after arthroscopic rotator cuff repair using single-row anchor fixation: a prospective study of single-tendon and two-tendon tears. J Shoulder Elbow Surg. 2008 Nov-Dec;17(6):845-52. doi: 10.1016/j.jse.2008.04.004. Epub 2008 Aug 20. — View Citation
Diebold G, Lam P, Walton J, Murrell GAC. Relationship Between Age and Rotator Cuff Retear: A Study of 1,600 Consecutive Rotator Cuff Repairs. J Bone Joint Surg Am. 2017 Jul 19;99(14):1198-1205. doi: 10.2106/JBJS.16.00770. — View Citation
Franceschi F, Ruzzini L, Longo UG, Martina FM, Zobel BB, Maffulli N, Denaro V. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med. 2007 Aug;35(8):1254-60. doi: 10.1177/0363546507302218. Epub 2007 Jun 6. — View Citation
Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13. — View Citation
Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14. — View Citation
Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004 Feb;86(2):219-24. doi: 10.2106/00004623-200402000-00002. — View Citation
Gulotta LV, Nho SJ, Dodson CC, Adler RS, Altchek DW, MacGillivray JD; HSS Arthroscopic Rotator Cuff Registry. Prospective evaluation of arthroscopic rotator cuff repairs at 5 years: part II--prognostic factors for clinical and radiographic outcomes. J Shoulder Elbow Surg. 2011 Sep;20(6):941-6. doi: 10.1016/j.jse.2011.03.028. Epub 2011 Jun 29. — View Citation
Harryman DT 2nd, Hettrich CM, Smith KL, Campbell B, Sidles JA, Matsen FA 3rd. A prospective multipractice investigation of patients with full-thickness rotator cuff tears: the importance of comorbidities, practice, and other covariables on self-assessed shoulder function and health status. J Bone Joint Surg Am. 2003 Apr;85(4):690-6. — View Citation
Harryman DT 2nd, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA 3rd. Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991 Aug;73(7):982-9. — View Citation
Hein J, Reilly JM, Chae J, Maerz T, Anderson K. Retear Rates After Arthroscopic Single-Row, Double-Row, and Suture Bridge Rotator Cuff Repair at a Minimum of 1 Year of Imaging Follow-up: A Systematic Review. Arthroscopy. 2015 Nov;31(11):2274-81. doi: 10.1016/j.arthro.2015.06.004. Epub 2015 Jul 15. — View Citation
Iannotti JP, Deutsch A, Green A, Rudicel S, Christensen J, Marraffino S, Rodeo S. Time to failure after rotator cuff repair: a prospective imaging study. J Bone Joint Surg Am. 2013 Jun 5;95(11):965-71. doi: 10.2106/JBJS.L.00708. — View Citation
Jost B, Pfirrmann CW, Gerber C, Switzerland Z. Clinical outcome after structural failure of rotator cuff repairs. J Bone Joint Surg Am. 2000 Mar;82(3):304-14. doi: 10.2106/00004623-200003000-00002. — View Citation
Kim KC, Shin HD, Lee WY. Repair integrity and functional outcomes after arthroscopic suture-bridge rotator cuff repair. J Bone Joint Surg Am. 2012 Apr 18;94(8):e48. doi: 10.2106/JBJS.K.00158. — View Citation
Klepps S, Bishop J, Lin J, Cahlon O, Strauss A, Hayes P, Flatow EL. Prospective evaluation of the effect of rotator cuff integrity on the outcome of open rotator cuff repairs. Am J Sports Med. 2004 Oct-Nov;32(7):1716-22. doi: 10.1177/0363546504265262. — View Citation
Ko SH, Lee CC, Friedman D, Park KB, Warner JJ. Arthroscopic single-row supraspinatus tendon repair with a modified mattress locking stitch: a prospective, randomized controlled comparison with a simple stitch. Arthroscopy. 2008 Sep;24(9):1005-12. doi: 10.1016/j.arthro.2008.04.074. Epub 2008 Jun 24. — View Citation
Koh KH, Kang KC, Lim TK, Shon MS, Yoo JC. Prospective randomized clinical trial of single- versus double-row suture anchor repair in 2- to 4-cm rotator cuff tears: clinical and magnetic resonance imaging results. Arthroscopy. 2011 Apr;27(4):453-62. doi: 10.1016/j.arthro.2010.11.059. — View Citation
Lapner PL, Sabri E, Rakhra K, McRae S, Leiter J, Bell K, Macdonald P. A multicenter randomized controlled trial comparing single-row with double-row fixation in arthroscopic rotator cuff repair. J Bone Joint Surg Am. 2012 Jul 18;94(14):1249-57. doi: 10.2106/JBJS.K.00999. — View Citation
Le BT, Wu XL, Lam PH, Murrell GA. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am J Sports Med. 2014 May;42(5):1134-42. doi: 10.1177/0363546514525336. Epub 2014 Apr 18. — View Citation
Lee BG, Cho NS, Rhee YG. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. Arthroscopy. 2012 Jan;28(1):34-42. doi: 10.1016/j.arthro.2011.07.012. Epub 2011 Oct 20. — View Citation
Liem D, Lichtenberg S, Magosch P, Habermeyer P. Magnetic resonance imaging of arthroscopic supraspinatus tendon repair. J Bone Joint Surg Am. 2007 Aug;89(8):1770-6. doi: 10.2106/JBJS.F.00749. — View Citation
Liu SH, Baker CL. Arthroscopically assisted rotator cuff repair: correlation of functional results with integrity of the cuff. Arthroscopy. 1994 Feb;10(1):54-60. doi: 10.1016/s0749-8063(05)80293-2. — View Citation
Ma HL, Chiang ER, Wu HT, Hung SC, Wang ST, Liu CL, Chen TH. Clinical outcome and imaging of arthroscopic single-row and double-row rotator cuff repair: a prospective randomized trial. Arthroscopy. 2012 Jan;28(1):16-24. doi: 10.1016/j.arthro.2011.07.003. Epub 2011 Oct 7. — View Citation
Mall NA, Kim HM, Keener JD, Steger-May K, Teefey SA, Middleton WD, Stobbs G, Yamaguchi K. Symptomatic progression of asymptomatic rotator cuff tears: a prospective study of clinical and sonographic variables. J Bone Joint Surg Am. 2010 Nov 17;92(16):2623-33. doi: 10.2106/JBJS.I.00506. — View Citation
Mather RC 3rd, Koenig L, Acevedo D, Dall TM, Gallo P, Romeo A, Tongue J, Williams G Jr. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013 Nov 20;95(22):1993-2000. doi: 10.2106/JBJS.L.01495. — View Citation
Nho SJ, Shindle MK, Adler RS, Warren RF, Altchek DW, MacGillivray JD. Prospective analysis of arthroscopic rotator cuff repair: subgroup analysis. J Shoulder Elbow Surg. 2009 Sep-Oct;18(5):697-704. doi: 10.1016/j.jse.2008.11.018. Epub 2009 Mar 9. — View Citation
Romeo A, Easley J, Regan D, Hackett E, Johnson J, Johnson J, Puttlitz C, McGilvray K. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep. J Shoulder Elbow Surg. 2022 Feb;31(2):402-412. doi: 10.1016/j.jse.2021.07.018. Epub 2021 Aug 25. — View Citation
Tashjian RZ, Hollins AM, Kim HM, Teefey SA, Middleton WD, Steger-May K, Galatz LM, Yamaguchi K. Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med. 2010 Dec;38(12):2435-42. doi: 10.1177/0363546510382835. Epub 2010 Oct 28. — View Citation
Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elbow Surg. 1999 Jul-Aug;8(4):296-9. doi: 10.1016/s1058-2746(99)90148-9. — View Citation
Teunis T, Lubberts B, Reilly BT, Ring D. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J Shoulder Elbow Surg. 2014 Dec;23(12):1913-1921. doi: 10.1016/j.jse.2014.08.001. — View Citation
Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlais F. Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res. 1997 Nov;(344):275-83. — View Citation
Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 2006 Aug;88(8):1699-704. doi: 10.2106/JBJS.E.00835. — View Citation
* Note: There are 38 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Failure of the repair | To determine if the use of the nanofiber scaffold changes the occurrence of postoperative rotator cuff repair (RCR) failure in patients older than 55 years | 24 months | |
Secondary | Change in shoulder range of motion | Patients range of motion including forward flexion, abduction and external rotation will be measured preopertively and postoperatively with a manual goniometer at 6 weeks, 3 months, 6 months, 12 months and 24 months postoperatively to measure for differences. | Preoperative, 6 weeks, 3 months, 6 months, 12 months, 24 months postoperative | |
Secondary | Change in isometric rotator cuff muscle strength peak force | To determine if the use of the nanofiber scaffold changes postoperative isometric muscle strength following RCR using a Lafayette muscle dynometer. The contralateral shoulder will be assessed for comparison. Measurements will be recorded in peak force and pounds of force. | Preoperative, 3 months, 6 months, 12 months, 24 months postoperative | |
Secondary | Change in patient-reported American Shoulder and Elbow Scores | To determine if there is a difference in American Shoulder and Elbow scores of patients with rotator cuff tears treated with and without the nanofiber scaffold measured at preoperative visit, 2 weeks, 6 weeks, 3 months, 6 months, 12 months and 24 months after surgery. | Preoperative, 2 weeks, 6 weeks, 3 months, 6 months, 12 months, 24 months postoperative | |
Secondary | Change in patient-reported postoperative pain (Visual Analogue Scale - Pain) | Patient reported postoperative visual analogue pain (on a scale of 0-10), measured preoperatively and postoperatively will be assessed for a difference. Pain scores will be checked at 2 weeks, 6 weeks, 3 months, 6 months, 12 months and 24 months after surgery. | Preoperative, 2 weeks, 6 weeks, 3 months, 6 months, 12 months, 24 months postoperative | |
Secondary | Change in patient-reported Single Assessment Numeric Evaluation (SANE) score | Patient reported SANE score (on a scale of 0 to 100%), measured preoperatively and postoperatively will be assessed for a difference; Scores will be checked at 2 weeks, 6 weeks, 3 months, 6 months, 12 months and 24 months after surgery. | Preoperative, 2 weeks, 6 weeks, 3 months, 6 months, 12 months, 24 months postoperative | |
Secondary | Change in patient-reported Veteran Rand 12 (VR-12) score | Patient reported VR-12 (Veteran rand) will be compared measured postoperatively will be assessed for a difference; Scores will be checked at 2 weeks, 6 weeks, 3 months, 6 months, 12 months and 24 months after surgery. | Preoperative, 2 weeks, 6 weeks, 3 months, 6 months, 12 months, 24 months postoperative |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04974242 -
Physiotherapy for Patients Awaiting Rotator Cuff Repair
|
N/A | |
Recruiting |
NCT06055478 -
Effect of Suprascapular Nerve Block and Axillary Nerve Block After Arthroscopic Rotator Cuff Repair
|
N/A | |
Completed |
NCT04552925 -
Exercises With Electromyographic Biofeedback in Conservative Treatment of Massive Rotator Cuff Tears
|
N/A | |
Not yet recruiting |
NCT06032416 -
DenCT Shoulder Bone Quality Evaluation
|
N/A | |
Not yet recruiting |
NCT04047745 -
Post-operative Exparel Study Following Rotator Cuff Repair
|
N/A | |
Completed |
NCT01029574 -
Platelet Rich Plasma on Rotator Cuff Repair
|
Phase 3 | |
Not yet recruiting |
NCT05817578 -
Profiling the RCRSP Patient: a Pain Phenotype Classification Algorithm
|
||
Not yet recruiting |
NCT05670080 -
Does MI Have a Therapeutic Role in Arthroscopic Rotator Cuff Repair?
|
N/A | |
Suspended |
NCT04421417 -
The Effect of Microfracture Procedure on Rotator Cuff Tendon Healing
|
N/A | |
Recruiting |
NCT06156423 -
Investigation of the Effect of Motor Control Exercises in Patients Undergoing Rotator Cuff Surgery
|
N/A | |
Completed |
NCT06145815 -
Machine Learning Predictive Model for Rotator Cuff Repair Failure
|
||
Not yet recruiting |
NCT05009498 -
Vitamin D3 Supplementation for Vitamin D Deficiency in Rotator Cuff Repair Surgery
|
N/A | |
Not yet recruiting |
NCT04538001 -
Safety and Efficacy of Rotator Cuff Function Restoration Balloon in Irreparable Rotator Cuff Tear
|
N/A | |
Completed |
NCT04594408 -
Tranexamic Acid to Improve Arthroscopic Visualization in Shoulder Surgery
|
Phase 4 | |
Terminated |
NCT04855968 -
The Effect of Mindfulness/Meditation on Post-operative Pain and Opioid Consumption
|
N/A | |
Completed |
NCT04710966 -
Comparison Between Arthroscopic Debridement and Repair for Partial-thickness Rotator Cuff Tears
|
N/A | |
Recruiting |
NCT06192459 -
Effect of the Muscle Strength and Range of Motion Training for Post-platelet Rich Plasma Injection in People With Rotator Cuff Partial Tear
|
N/A | |
Recruiting |
NCT05925881 -
Lower Trapezius Transfer vs Bridging Reconstruction
|
N/A | |
Recruiting |
NCT05988541 -
Rotator Cuff Integrity and Clinical Outcomes 5 Years After Repair.
|
N/A | |
Not yet recruiting |
NCT04584476 -
Superior Capsular Reconstruction Versus. Partial Repair for Irreparable Rotator Cuff Tears
|
N/A |