Clinical Trials Logo

Refractory Neuroblastoma clinical trials

View clinical trials related to Refractory Neuroblastoma.

Filter by:
  • Completed  
  • Page 1

NCT ID: NCT02304458 Completed - Metastatic Melanoma Clinical Trials

Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas

Start date: March 30, 2015
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

NCT ID: NCT02095132 Completed - Clinical trials for Refractory Malignant Solid Neoplasm

Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients With Relapsed or Refractory Solid Tumors

Start date: March 28, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01109238 Completed - Clinical trials for Refractory Neuroblastoma

A Trial Using Molecular-Guided Therapy in Patients With Refractory or Recurrent Neuroblastoma

Start date: April 2010
Phase:
Study type: Observational

The investigators are studying new ways to make treatment decisions for these types of cancer. Technologies at the Van Andel Research Institute (VARI) are available to determine a tumor's molecular makeup (gene expression profile). This technology (called "Xenobase") is being used to discover new ways to understand cancers and potentially predict the best treatments for patients with cancer. The researchers at VARI have filed a patent on the Xenobase and the specific network analysis method that the investigators will be using as part of this study. A specimen obtained from the tumor during a recent surgical, biopsy, or bone marrow procedure will be sent to the Van Andel Research Institute. Researchers will attempt to identify the molecular makeup within the specimen, as well as in blood and urine samples in patients with aggressive and/or refractory cancer. This additional testing is different than the routine tests currently performed at the hospital for the evaluation of cancer. The goals of this part of the study are: To determine if the investigators tumor board committee (at minimum a panel of 3 oncologists and 1 pharmacist) can use patient specific cancer cells to make real-time treatment decision using patient specific genetic information, and predicted therapies generated in the Xenobase report.

NCT ID: NCT00939770 Completed - Clinical trials for Refractory Malignant Solid Neoplasm

Crizotinib in Treating Younger Patients With Relapsed or Refractory Solid Tumors or Anaplastic Large Cell Lymphoma

Start date: September 21, 2009
Phase: Phase 1/Phase 2
Study type: Interventional

This phase 1/2 trial the studies side effects and best dose of crizotinib and to see how well it works in treating young patients with solid tumors or anaplastic large cell lymphoma that has returned after a period of improvement or does not respond to treatment. Crizotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. (Phase 1 completed 2/15/13)