Rectal Cancer Clinical Trial
— ROLARROfficial title:
RObotic Versus LAparoscopic Resection for Rectal Cancer An International, Multicentre, Prospective, Randomised, Controlled, Unblinded, Parallel-group Trial of Robotic-assisted Versus Laparoscopic Surgery for Treatment of Rectal Cancer.
NCT number | NCT01736072 |
Other study ID # | 20118537 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | December 2011 |
Est. completion date | April 30, 2018 |
Verified date | August 2023 |
Source | University of California, Irvine |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The purpose of this study is to compare two different surgical procedures for the treatment of Rectal Cancer: Laparoscopic Surgery and Robotic Assisted Laparoscopic Surgery. The ROLARR study is for participants with cancer of the rectum for whom a laparoscopic operation (sometimes called "keyhole surgery") has been recommended by their surgeon. In the past most rectal cancers were removed using "open" surgery. Open surgery involves a large cut down the middle of the patient's abdomen to allow the surgeon to see and take out the cancer. On a previous study showed that using laparoscopic surgery to remove colorectal cancers was as good as open surgery for curing cancer. There is now another option to remove rectal cancers, which involves using a robotic system with laparoscopic surgery. This type of surgery is called "robotic-assisted" laparoscopic surgery and is now becoming widely used by surgeons to remove cancers including the rectum, as well as for other non-cancer operations. In order to perform robotic-assisted laparoscopic surgery, the surgeon sits at a robotic control unit a few feet away from the patient. Using the robotic control unit, the surgeon can see a clear video image of the patient's abdomen and the operation site. The surgeon can perform the operation from the robotic control unit by controlling the movement of a set of robotic surgical instruments, guided by the video camera. Like standard laparoscopic surgery, the surgeon is able to carry out the entire operation through a few small cuts in the abdomen. The camera of the robotic system provides a 3D high-definition magnified view of the operation site and the robotic system is also able to translate the movements of the surgeon's hands into small precise movements inside the patient's body. We want to test whether robotic-assisted laparoscopic surgery is as good, or even better, at removing rectal cancers as standard laparoscopic surgery (actually Robotic-assisted laparoscopic surgery is used as standard of care in rectal cancer patients at University of California, Irvine Medical Center). We also want to investigate whether using robotic-assisted laparoscopic surgery reduces the number of times a laparoscopic operation needs to be converted to an open operation, and see whether using a robotic system can also shorten the length of time patients need to stay in hospital and if it reduces the number of complications patients may have during and after their operation.
Status | Completed |
Enrollment | 471 |
Est. completion date | April 30, 2018 |
Est. primary completion date | January 30, 2018 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Aged = 18 years 2. Able to provide written informed consent 3. Diagnosis of rectal cancer amenable to curative surgery either by low anterior resection, high anterior resection, or abdominoperineal resection i.e. staged T1-3, N0-2, M0 by imaging as per local practice; although not mandated, CT imaging with either additional MRI or trans-rectal ultrasound is recommended to assess distant and local disease. 4. Rectal cancer suitable for resection by either standard or robotic-assisted laparoscopic procedure 5. Fit for robotic-assisted or standard laparoscopic rectal resection 6. American Society of Anesthesiologists (ASA) physical status = 3 7. Capable of completing required questionnaires at time of consent (provided questionnaires are available in a language spoke fluently by the participant) Exclusion Criteria: 1. Benign lesions of the rectum 2. Benign or malignant diseases of the anal canal 3. Locally advanced cancers not amenable to curative surgery 4. Locally advanced cancers requiring en bloc multi-visceral resection 5. Synchronous colorectal tumors requiring multi-segment surgical resection (N.B. a benign lesion within the resection field in addition to the main cancer would not exclude a patient) 6. Co-existent inflammatory bowel disease 7. Clinical or radiological evidence of metastatic spread 8. Concurrent or previous diagnosis of invasive cancer within 5 years that could confuse diagnosis (non- melanomatous skin cancer or superficial bladder cancer treated with curative intent are acceptable; for other cases please discuss with Chief Investigator via CTRU) 9. History of psychiatric or addictive disorder or other medical condition that, in the opinion of the investigator, would preclude the patient from meeting the trial requirements 10. Pregnancy or breastfeeding women. 11. Participation in another rectal cancer clinical trial relating to surgical technique. |
Country | Name | City | State |
---|---|---|---|
United States | John Muir Medical Center | Concord | California |
United States | Baylor University Medical Center | Dallas | Texas |
United States | Duke University Medical Center | Durham | North Carolina |
United States | Jackson South Community Hospital | Miami | Florida |
United States | University of California, Irvine Medical Center | Orange | California |
United States | Aria Health | Philadelphia | Pennsylvania |
United States | Washington University School of Medicine in St. Louis | Saint Louis | Missouri |
United States | St. Joseph Mercy Health System | Ypsilanti | Michigan |
Lead Sponsor | Collaborator |
---|---|
University of California, Irvine | University of Leeds |
United States,
Aziz O, Constantinides V, Tekkis PP, Athanasiou T, Purkayastha S, Paraskeva P, Darzi AW, Heriot AG. Laparoscopic versus open surgery for rectal cancer: a meta-analysis. Ann Surg Oncol. 2006 Mar;13(3):413-24. doi: 10.1245/ASO.2006.05.045. Epub 2006 Feb 1. — View Citation
Baik SH, Ko YT, Kang CM, Lee WJ, Kim NK, Sohn SK, Chi HS, Cho CH. Robotic tumor-specific mesorectal excision of rectal cancer: short-term outcome of a pilot randomized trial. Surg Endosc. 2008 Jul;22(7):1601-8. doi: 10.1007/s00464-008-9752-z. Epub 2008 Feb 13. — View Citation
Barry MJ, Fowler FJ Jr, O'Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK, Cockett AT. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol. 1992 Nov;148(5):1549-57; discussion 1564. doi: 10.1016/s0022-5347(17)36966-5. — View Citation
Clinical Outcomes of Surgical Therapy Study Group; Nelson H, Sargent DJ, Wieand HS, Fleshman J, Anvari M, Stryker SJ, Beart RW Jr, Hellinger M, Flanagan R Jr, Peters W, Ota D. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004 May 13;350(20):2050-9. doi: 10.1056/NEJMoa032651. — View Citation
D'Annibale A, Morpurgo E, Fiscon V, Trevisan P, Sovernigo G, Orsini C, Guidolin D. Robotic and laparoscopic surgery for treatment of colorectal diseases. Dis Colon Rectum. 2004 Dec;47(12):2162-8. doi: 10.1007/s10350-004-0711-z. — View Citation
DeNoto G, Rubach E, Ravikumar TS. A standardized technique for robotically performed sigmoid colectomy. J Laparoendosc Adv Surg Tech A. 2006 Dec;16(6):551-6. doi: 10.1089/lap.2006.16.551. — View Citation
Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis. 1997;12(1):19-23. doi: 10.1007/s003840050072. — View Citation
Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM; MRC CLASICC trial group. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet. 2005 May 14-20;365(9472):1718-26. doi: 10.1016/S0140-6736(05)66545-2. — View Citation
Hellan M, Anderson C, Ellenhorn JD, Paz B, Pigazzi A. Short-term outcomes after robotic-assisted total mesorectal excision for rectal cancer. Ann Surg Oncol. 2007 Nov;14(11):3168-73. doi: 10.1245/s10434-007-9544-z. Epub 2007 Sep 1. — View Citation
Hildebrandt U, Plusczyk T, Kessler K, Menger MD. Single-surgeon surgery in laparoscopic colonic resection. Dis Colon Rectum. 2003 Dec;46(12):1640-5. doi: 10.1007/BF02660769. — View Citation
Jayne DG, Brown JM, Thorpe H, Walker J, Quirke P, Guillou PJ. Bladder and sexual function following resection for rectal cancer in a randomized clinical trial of laparoscopic versus open technique. Br J Surg. 2005 Sep;92(9):1124-32. doi: 10.1002/bjs.4989. — View Citation
Jayne DG, Guillou PJ, Thorpe H, Quirke P, Copeland J, Smith AM, Heath RM, Brown JM; UK MRC CLASICC Trial Group. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol. 2007 Jul 20;25(21):3061-8. doi: 10.1200/JCO.2006.09.7758. — View Citation
Mirnezami AH, Mirnezami R, Venkatasubramaniam AK, Chandrakumaran K, Cecil TD, Moran BJ. Robotic colorectal surgery: hype or new hope? A systematic review of robotics in colorectal surgery. Colorectal Dis. 2010 Nov;12(11):1084-93. doi: 10.1111/j.1463-1318.2009.01999.x. — View Citation
Moloo H, Mamazza J, Poulin EC, Burpee SE, Bendavid Y, Klein L, Gregoire R, Schlachta CM. Laparoscopic resections for colorectal cancer: does conversion survival? Surg Endosc. 2004 May;18(5):732-5. doi: 10.1007/s00464-003-8923-1. Epub 2004 Apr 6. — View Citation
Pigazzi A, Ellenhorn JD, Ballantyne GH, Paz IB. Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. Surg Endosc. 2006 Oct;20(10):1521-5. doi: 10.1007/s00464-005-0855-5. Epub 2006 Aug 1. — View Citation
Punt CJ, Buyse M, Kohne CH, Hohenberger P, Labianca R, Schmoll HJ, Pahlman L, Sobrero A, Douillard JY. Endpoints in adjuvant treatment trials: a systematic review of the literature in colon cancer and proposed definitions for future trials. J Natl Cancer Inst. 2007 Jul 4;99(13):998-1003. doi: 10.1093/jnci/djm024. Epub 2007 Jun 27. — View Citation
Rawlings AL, Woodland JH, Crawford DL. Telerobotic surgery for right and sigmoid colectomies: 30 consecutive cases. Surg Endosc. 2006 Nov;20(11):1713-8. doi: 10.1007/s00464-005-0771-8. Epub 2006 Aug 28. — View Citation
Rawlings AL, Woodland JH, Vegunta RK, Crawford DL. Robotic versus laparoscopic colectomy. Surg Endosc. 2007 Oct;21(10):1701-8. doi: 10.1007/s00464-007-9231-y. Epub 2007 Mar 13. — View Citation
Rosen R, Brown C, Heiman J, Leiblum S, Meston C, Shabsigh R, Ferguson D, D'Agostino R Jr. The Female Sexual Function Index (FSFI): a multidimensional self-report instrument for the assessment of female sexual function. J Sex Marital Ther. 2000 Apr-Jun;26(2):191-208. doi: 10.1080/009262300278597. — View Citation
Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997 Jun;49(6):822-30. doi: 10.1016/s0090-4295(97)00238-0. — View Citation
Shepherd NA, Baxter KJ, Love SB. Influence of local peritoneal involvement on pelvic recurrence and prognosis in rectal cancer. J Clin Pathol. 1995 Sep;48(9):849-55. doi: 10.1136/jcp.48.9.849. — View Citation
Smets EM, Garssen B, Cull A, de Haes JC. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. Br J Cancer. 1996 Jan;73(2):241-5. doi: 10.1038/bjc.1996.42. — View Citation
Sobin LH, Fleming ID. TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer. 1997 Nov 1;80(9):1803-4. doi: 10.1002/(sici)1097-0142(19971101)80:93.0.co;2-9. No abstract available. — View Citation
Tang CL, Eu KW, Tai BC, Soh JG, MacHin D, Seow-Choen F. Randomized clinical trial of the effect of open versus laparoscopically assisted colectomy on systemic immunity in patients with colorectal cancer. Br J Surg. 2001 Jun;88(6):801-7. doi: 10.1046/j.1365-2168.2001.01781.x. — View Citation
Taylor GW. Minimally Invasive Robotic Association 2nd international congress: the Union League Club, New York, NY, USA, 18-20 January 2007. Int J Med Robot. 2007 Sep;3(3):281-6. doi: 10.1002/rcs.154. — View Citation
Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondre K, Stanbridge D, Fried GM. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005 Jul;190(1):107-13. doi: 10.1016/j.amjsurg.2005.04.004. — View Citation
Wibe A, Syse A, Andersen E, Tretli S, Myrvold HE, Soreide O; Norwegian Rectal Cancer Group. Oncological outcomes after total mesorectal excision for cure for cancer of the lower rectum: anterior vs. abdominoperineal resection. Dis Colon Rectum. 2004 Jan;47(1):48-58. doi: 10.1007/s10350-003-0012-y. Epub 2004 Jan 14. — View Citation
* Note: There are 27 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Intra-operative and post-operative complications | All the intra-operative complications will be assessed at 30 days and 6-months after the surgical procedure. | 30 day and 6 months | |
Other | 30-day post-operative Mortality | Thirty-day operative mortality is defined as deaths occurring from any cause during the first 30 post-operative days. | 30 day post-surgery | |
Other | Three-year disease-free and overall survival. | Overall survival is defined as the time from date of randomization to date of death from any cause. Disease-free survival is defined according to Punt et al's definitions as the time from date of randomization to date of death from any cause, recurrent disease (locoregional or distant recurrence) or second primary cancer. | 3 years | |
Other | Sexual Disfunction Assessment | Patient self-reported bladder and sexual function as assessed by the International Prostatic Symptom Score(I-PSS©) for male and female bladder function, and the International Index of Erectile Function (IIEF) Female Sexual Function Index(FSFI©) for sexual function. | 6-months | |
Primary | End of Conversion to Open Surgery | The primary end point is the rate of conversion to open surgery as an indicator of surgical technical difficulty. Conversion is defined as the use of a laparotomy wound for any part of the mesorectal dissection. The use of a limited laparotomy wound to facilitate a low stapled anastomosis and/or specimen extraction is permissible and not defined as an open conversion. | 1 day | |
Secondary | Oncological Efficacy | Pathological CRM positivity rates as recorded from local histopathology review, where resection margin positivity is defined as a distance of =1mm of the cancer from any resection margin. | 1 day |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06380101 -
Evaluating a Nonessential Amino Acid Restriction (NEAAR) Medical Food With Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer (LARC)
|
N/A | |
Active, not recruiting |
NCT05551052 -
CRC Detection Reliable Assessment With Blood
|
||
Recruiting |
NCT04323722 -
Impact of Bladder Depletion on Mesorectal Movements During Radiotherapy in Rectal Cancer
|
N/A | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT04088955 -
A Digimed Oncology PharmacoTherapy Registry
|
||
Active, not recruiting |
NCT01347697 -
Collagen Implant (Biological Mesh) Versus GM Flap for Reconstruction of Pelvic Floor After ELAPE in Rectal Cancer
|
N/A | |
Recruiting |
NCT04495088 -
Preoperative FOLFOX Versus Postoperative Risk-adapted Chemotherapy in Patients With Locally Advanced Rectal Cancer
|
Phase 3 | |
Withdrawn |
NCT03007771 -
Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) Used for Mild Hyperthermia
|
Phase 1 | |
Terminated |
NCT01347645 -
Irinotecan Plus E7820 Versus FOLFIRI in Second-Line Therapy in Patients With Locally Advanced or Metastatic Colon or Rectal Cancer
|
Phase 1/Phase 2 | |
Not yet recruiting |
NCT03520088 -
PROSPECTIVE CONTROLLED AND RANDOMIZED STUDY OF THE GENITOURINARY FUNCTION AFTER RECTAL CANCER SURGERY IN RELATION TO THE DISSECTION OF THE INFERIOR MESENTERIC VESSELS
|
N/A | |
Recruiting |
NCT05556473 -
F-Tryptophan PET/CT in Human Cancers
|
Phase 1 | |
Recruiting |
NCT04749381 -
The Role of TCM on ERAS of Rectal Cancer Patients
|
Phase 2 | |
Enrolling by invitation |
NCT05028192 -
Mitochondria Preservation by Exercise Training: a Targeted Therapy for Cancer and Chemotherapy-induced Cachexia
|
||
Recruiting |
NCT03283540 -
Transanal Total Mesorectal Excision for Rectal Cancer on Anal Physiology + Fecal Incontinence
|
||
Completed |
NCT04534309 -
Behavioral Weight Loss Program for Cancer Survivors in Maryland
|
N/A | |
Recruiting |
NCT05914766 -
An Informational and Supportive Care Intervention for Patients With Locally Advanced Rectal Cancer
|
N/A | |
Recruiting |
NCT04852653 -
A Prospective Feasibility Study Evaluating Extracellular Vesicles Obtained by Liquid Biopsy for Neoadjuvant Treatment Response Assessment in Rectal Cancer
|
||
Recruiting |
NCT03190941 -
Administering Peripheral Blood Lymphocytes Transduced With a Murine T-Cell Receptor Recognizing the G12V Variant of Mutated RAS in HLA-A*11:01 Patients
|
Phase 1/Phase 2 | |
Completed |
NCT02810652 -
Perioperative Geriatrics Intervention for Older Cancer Patients Undergoing Surgical Resection
|
N/A | |
Terminated |
NCT02933944 -
Exploratory Study of TG02-treatment as Monotherapy or in Combination With Pembrolizumab to Assess Safety and Immune Activation in Patients With Locally Advanced Primary and Recurrent Oncogenic RAS Exon 2 Mutant Colorectal Cancer
|
Phase 1 |