Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06133374
Other study ID # HREBA.CC-23-0001
Secondary ID
Status Not yet recruiting
Phase
First received
Last updated
Start date June 2024
Est. completion date May 2028

Study information

Verified date October 2023
Source University of Calgary
Contact Elleine Allapitan
Phone 403-220-8440
Email elleine.allapitan@ucalgary.ca
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The purpose of this study is to determine whether results from a fine needle biopsy are the same as results from a larger sample that is acquired from the surgical pathology using the Thyroid GuidePx® test in patients with papillary thyroid carcinoma.


Description:

Thyroid cancer is the 8th most common cancer, and incidence has been increasing. Papillary thyroid carcinoma (PTC) accounts for most thyroid cancers. Treatment decisions related to PTC depend on the doctor's estimate on whether the cancer is aggressive or not. Current methods for distinguishing aggressive tumors from less aggressive tumors rely on clinical factors as well as factors related to the final pathology (after the tumor has been removed). Ideally, the information required to make decisions would be available prior to surgery, so that surgical decisions can be made. A new test is being developed to determine molecular features of a PTC and to estimate the risk of cancer recurrence after surgery. Thyroid GuidePx® provides unique information that may inform doctors' decisions. The greatest potential for Thyroid GuidePx® to impact on clinical care is if it can be performed prior to surgery on a fine needle biopsy (FNB). If Thyroid GuidePx® could be done on an FNB, it would inform surgeons on the type of surgery that would be most appropriate for an individual. A recent feasibility study consisting of 12 patients with PTC demonstrated that performing the Thyroid GuidePx® assay on FNBs is feasible. However, reliance on a limited FNB for molecular disease characterization implies that the sample is representative of the entirety of the tumor. Genomic and transcriptomic heterogeneity has been described in primary tumors and metastases. Therefore, it will be important to document the concordance between samples acquired by FNB and surgical samples. The goal of this study is to determine whether the more limited sample from an FNB is sufficiently representative of the larger tumor to determine a valid molecular classification using the Thyroid GuidePx® test in patients with PTC. Participants will be invited to participate if they have a preoperative tissue diagnosis of PTC (Bethesda VI) or suspicious for PTC (Bethesda V), and they are eligible for partial or total thyroidectomy. During surgery, when the thyroid gland and the tumor are exposed, the surgeon will perform an FNB of the dominant tumor (ie: the lesion identified preoperatively), under direct vision. The cellular material from the FNB will be sent for processing. Separate surgical samples will be processed and examined. This will follow routine specimen processing protocols and will not interfere with standard methods of pathologic diagnosis. Tissue will be released for research only once sufficient tissue is taken for diagnostic and clinical use. RNASeq for Thyroid GuidePx® for both FNB and surgical samples will be performed and compared.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 130
Est. completion date May 2028
Est. primary completion date May 2028
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Age = 18 years - A diagnosis of papillary thyroid cancer based on a fine needle biopsy (FNB) interpreted as a Bethesda V or VI cytology - Tumor size > 1 cm in maximal diameter - The patient is an operative candidate - The patient has provided consent Exclusion Criteria: - Family history of thyroid cancer - History of radiation to the neck - Unable or unwilling to have a fine needle biopsy - Unwilling to undergo thyroidectomy - Final pathology does not demonstrate papillary thyroid cancer - Cases where there is no clear dominant nodule - Cases where there are multiple nodules that preclude sampling of a defined nodule

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Canada Foothills Medical Centre Calgary Alberta

Sponsors (3)

Lead Sponsor Collaborator
University of Calgary Alberta Health services, Qualisure Diagnostics Inc.

Country where clinical trial is conducted

Canada, 

References & Publications (25)

Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014 Oct 23;159(3):676-90. doi: 10.1016/j.cell.2014.09.050. — View Citation

Castagna MG, Maino F, Cipri C, Belardini V, Theodoropoulou A, Cevenini G, Pacini F. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol. 2011 Sep;165(3):441-6. doi: 10.1530/EJE-11-0466. Epub 2011 Jul 12. — View Citation

Chen T, Gilfix BM, Rivera J, Sadeghi N, Richardson K, Hier MP, Forest VI, Fishman D, Caglar D, Pusztaszeri M, Mitmaker EJ, Payne RJ. The Role of the ThyroSeq v3 Molecular Test in the Surgical Management of Thyroid Nodules in the Canadian Public Health Care Setting. Thyroid. 2020 Sep;30(9):1280-1287. doi: 10.1089/thy.2019.0539. Epub 2020 May 5. — View Citation

Cheng SP, Chien MN, Wang TY, Lee JJ, Lee CC, Liu CL. Reconsideration of tumor size threshold for total thyroidectomy in differentiated thyroid cancer. Surgery. 2018 Sep;164(3):504-510. doi: 10.1016/j.surg.2018.04.019. Epub 2018 May 26. — View Citation

Craig S, Stretch C, Farshidfar F, Sheka D, Alabi N, Siddiqui A, Kopciuk K, Park YJ, Khalil M, Khan F, Harvey A, Bathe OF. A clinically useful and biologically informative genomic classifier for papillary thyroid cancer. Front Endocrinol (Lausanne). 2023 Sep 12;14:1220617. doi: 10.3389/fendo.2023.1220617. eCollection 2023. — View Citation

Craig SJ, Bysice AM, Nakoneshny SC, Pasieka JL, Chandarana SP. The Identification of Intraoperative Risk Factors Can Reduce, but Not Exclude, the Need for Completion Thyroidectomy in Low-Risk Papillary Thyroid Cancer Patients. Thyroid. 2020 Feb;30(2):222-228. doi: 10.1089/thy.2019.0274. Epub 2020 Jan 9. — View Citation

Davies L, Morris LG, Haymart M, Chen AY, Goldenberg D, Morris J, Ogilvie JB, Terris DJ, Netterville J, Wong RJ, Randolph G; AACE Endocrine Surgery Scientific Committee. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY DISEASE STATE CLINICAL REVIEW: THE INCREASING INCIDENCE OF THYROID CANCER. Endocr Pract. 2015 Jun;21(6):686-96. doi: 10.4158/EP14466.DSCR. — View Citation

Dhir M, McCoy KL, Ohori NP, Adkisson CD, LeBeau SO, Carty SE, Yip L. Correct extent of thyroidectomy is poorly predicted preoperatively by the guidelines of the American Thyroid Association for low and intermediate risk thyroid cancers. Surgery. 2018 Jan;163(1):81-87. doi: 10.1016/j.surg.2017.04.029. Epub 2017 Nov 8. — View Citation

Eszlinger M, Bohme K, Ullmann M, Gorke F, Siebolts U, Neumann A, Franzius C, Adam S, Molwitz T, Landvogt C, Amro B, Hach A, Feldmann B, Graf D, Wefer A, Niemann R, Bullmann C, Klaushenke G, Santen R, Tonshoff G, Ivancevic V, Kogler A, Bell E, Lorenz B, Kluge G, Hartenstein C, Ruschenburg I, Paschke R. Evaluation of a Two-Year Routine Application of Molecular Testing of Thyroid Fine-Needle Aspirations Using a Seven-Gene Panel in a Primary Referral Setting in Germany. Thyroid. 2017 Mar;27(3):402-411. doi: 10.1089/thy.2016.0445. Epub 2017 Feb 7. — View Citation

Flack V, Afifi A, Lachenbruch P, Schouten H. Sample size determinations for the two rater kappa statistic. Psychometrika. 1988;53(3):321-5.

Fuller MY, Mody D, Hull A, Pepper K, Hendrickson H, Olsen R. Next-Generation Sequencing Identifies Gene Mutations That Are Predictive of Malignancy in Residual Needle Rinses Collected From Fine-Needle Aspirations of Thyroid Nodules. Arch Pathol Lab Med. 2018 Feb;142(2):178-183. doi: 10.5858/arpa.2017-0136-OA. Epub 2017 May 24. — View Citation

Gonzalez HE, Martinez JR, Vargas-Salas S, Solar A, Veliz L, Cruz F, Arias T, Loyola S, Horvath E, Tala H, Traipe E, Meneses M, Marin L, Wohllk N, Diaz RE, Veliz J, Pineda P, Arroyo P, Mena N, Bracamonte M, Miranda G, Bruce E, Urra S. A 10-Gene Classifier for Indeterminate Thyroid Nodules: Development and Multicenter Accuracy Study. Thyroid. 2017 Aug;27(8):1058-1067. doi: 10.1089/thy.2017.0067. Epub 2017 Jul 11. — View Citation

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016 Jan;26(1):1-133. doi: 10.1089/thy.2015.0020. — View Citation

Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med Res Methodol. 2017 Apr 7;17(1):53. doi: 10.1186/s12874-017-0332-6. — View Citation

Kluijfhout WP, Pasternak JD, Lim J, Kwon JS, Vriens MR, Clark OH, Shen WT, Gosnell JE, Suh I, Duh QY. Frequency of High-Risk Characteristics Requiring Total Thyroidectomy for 1-4 cm Well-Differentiated Thyroid Cancer. Thyroid. 2016 Jun;26(6):820-4. doi: 10.1089/thy.2015.0495. Epub 2016 May 20. — View Citation

Lang BH, Shek TW, Wan KY. The significance of unrecognized histological high-risk features on response to therapy in papillary thyroid carcinoma measuring 1-4 cm: implications for completion thyroidectomy following lobectomy. Clin Endocrinol (Oxf). 2017 Feb;86(2):236-242. doi: 10.1111/cen.13165. Epub 2016 Sep 1. — View Citation

Le Pennec S, Konopka T, Gacquer D, Fimereli D, Tarabichi M, Tomas G, Savagner F, Decaussin-Petrucci M, Tresallet C, Andry G, Larsimont D, Detours V, Maenhaut C. Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer and matched metastases. Endocr Relat Cancer. 2015 Apr;22(2):205-16. doi: 10.1530/ERC-14-0351. Epub 2015 Feb 17. — View Citation

Murthy SP, Balasubramanian D, Subramaniam N, Nair G, Babu MJC, Rathod PV, Thankappan K, Iyer S, Vijayan SN, Prasad C, Nair V. Prevalence of adverse pathological features in 1 to 4 cm low-risk differentiated thyroid carcinoma. Head Neck. 2018 Jun;40(6):1214-1218. doi: 10.1002/hed.25099. Epub 2018 Feb 8. — View Citation

Pacini F, Castagna MG. Approach to and treatment of differentiated thyroid carcinoma. Med Clin North Am. 2012 Mar;96(2):369-83. doi: 10.1016/j.mcna.2012.01.002. Epub 2012 Feb 10. — View Citation

Pitoia F, Jerkovich F, Urciuoli C, Schmidt A, Abelleira E, Bueno F, Cross G, Tuttle RM. Implementing the Modified 2009 American Thyroid Association Risk Stratification System in Thyroid Cancer Patients with Low and Intermediate Risk of Recurrence. Thyroid. 2015 Nov;25(11):1235-42. doi: 10.1089/thy.2015.0121. Epub 2015 Aug 6. — View Citation

Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, Dondon MG, Abbas MT, Langlois C, Schlumberger M. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003 Nov 3;89(9):1638-44. doi: 10.1038/sj.bjc.6601319. — View Citation

Sciuto R, Romano L, Rea S, Marandino F, Sperduti I, Maini CL. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol. 2009 Oct;20(10):1728-35. doi: 10.1093/annonc/mdp050. — View Citation

Titov S, Demenkov PS, Lukyanov SA, Sergiyko SV, Katanyan GA, Veryaskina YA, Ivanov MK. Preoperative detection of malignancy in fine-needle aspiration cytology (FNAC) smears with indeterminate cytology (Bethesda III, IV) by a combined molecular classifier. J Clin Pathol. 2020 Nov;73(11):722-727. doi: 10.1136/jclinpath-2020-206445. Epub 2020 Mar 25. — View Citation

Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, Brokhin M, Omry G, Fagin JA, Shaha A. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010 Dec;20(12):1341-9. doi: 10.1089/thy.2010.0178. Epub 2010 Oct 29. — View Citation

Zhou H, Mody DR, Smith D, Lloyd MB, Kemppainen J, Houghton J, Wylie D, Szafranska-Schwarzbach AE, Takei H. FNA needle rinses preserved in Cytolyt are acceptable specimen type for mutation testing of thyroid nodules. J Am Soc Cytopathol. 2015 May-Jun;4(3):128-135. doi: 10.1016/j.jasc.2015.01.001. Epub 2015 Jan 9. — View Citation

* Note: There are 25 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Concordance between Thyroid GuidePx® molecular classifications acquired from FNAs and matched frozen surgical samples The molecular class assignment (Type 1, Type 2 and Type 3), based on the pattern of expression of prognostic genes, will be compared between samples obtained by FNB and matched frozen surgical specimens. The significance of concordance between the two sample types will be determined using the kappa statistic. December 1, 2025
Secondary The technical success rate in completing a valid Thyroid GuidePx® using FNB and FFPE surgical samples Sufficient RNA of good quality to perform the test December 1, 2025
Secondary The recurrence outcomes using the ATA risk stratification system vs. patients classified by Thyroid GuidePx® using surgical samples Biochemical and structural recurrence May 1, 2028
Secondary The test performance of Thyroid GuidePx® as a prognostic test (FNB and surgical samples) in comparison to ATA Risk Stratification. Specificity, sensitivity, AUROC, positive predictive value, and negative predictive value, May 1, 2028
See also
  Status Clinical Trial Phase
Completed NCT01441154 - Metabolic Effects of Synthetic Thyroid Hormone for Thyroid Cancer Treatment
Active, not recruiting NCT04544111 - PDR001 Combination Therapy for Radioiodine-Refractory Thyroid Cancer Phase 2
Recruiting NCT03469011 - A Study to Try to Bring Back Radioiodine Sensitivity in Patients With Advanced Thyroid Cancer. Phase 1
Recruiting NCT05752669 - Oxidative Stress and Mitochondrial TERT in Papillary Thyroid Cancer.
Recruiting NCT04076514 - The Role of Central Neck Dissection in Stage N0 Papillary Thyroid Carcinoma
Completed NCT06439745 - More Than 50% of the Patients With Clinically Unifocal T1b/Small T2 Node Negative Papillary Thyroid Carcinoma Scheduled for Thyroid Lobectomy May Require Completion Thyroidectomy if the Nodal Status is Evaluated
Active, not recruiting NCT01723202 - Dabrafenib With or Without Trametinib in Treating Patients With Recurrent Thyroid Cancer Phase 2
Recruiting NCT05500508 - Oral AMXT 1501 Dicaprate in Combination With IV DFMO Phase 1/Phase 2
Active, not recruiting NCT02568267 - Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) Phase 2
Unknown status NCT02140476 - Comparative Analysis Between Bipolar Device and Conventional Tie & Suture Technique in Thyroidectomy N/A
Recruiting NCT06286631 - Prediction of Lymph Node Metastasis in Patients With Thyroid Malignancy by a New Scale
Completed NCT06325787 - Image-guided Thermal Ablation vs. Lobectomy for Solitary Papillary Thyroid Microcarcinoma N/A
Terminated NCT01974284 - Percutaneous Ethanol Injection for Primary Papillary Thyroid Microcarcinoma N/A
Active, not recruiting NCT00984191 - Pilot 99mTechnetium-MIBI Single Photon Emission Computed Tomography - Computed Tomography (SPECT-CT) in Papillary Carcinoma (CA) Thyroid N/A
Active, not recruiting NCT04731467 - A Study of CM24 in Combination With Nivolumab in Adults With Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT05668962 - Restor. I-131 Upt. + Selpercatinib in RET F-P RAI-R TC Phase 2
Completed NCT02178345 - Predictive MRI Metrics for Tumor Aggressiveness in Papillary Thyroid Cancer
Completed NCT03470259 - Precision Thyroid Cancer Surgery With Molecular Fluorescent Guided Imaging Phase 1
Active, not recruiting NCT04129411 - Treatment of Papillary Thyroid Carcinoma With Radiofrequency Ablation N/A
Recruiting NCT03899792 - A Study of Oral LOXO-292 (Selpercatinib) in Pediatric Participants With Advanced Solid or Primary Central Nervous System (CNS) Tumors Phase 1/Phase 2