Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to understand how ketogenic food products affect oxygen toxicity in undersea divers. Oxygen toxicity affecting the central nervous system, mainly the brain, is a result of breathing higher than normal oxygen levels at elevated pressures as can be seen in SCUBA diving or inside a hyperbaric (pressure) chamber. This is a condition that may cause a wide variety of symptoms such as: vision disturbances, ear-ringing, nausea, twitching, irritability, dizziness, and potentially loss of consciousness or seizure. Because nutritional ketosis has been used to reduce or eliminate seizures in humans, it may be beneficial to reduce oxygen toxicity as well. The investigators hope this study will provide a help to develop practical and useful methods for improving the safety of undersea Navy divers, warfighters and submariners.


Clinical Trial Description

Central nervous system (CNS) oxygen toxicity continues to be a risk for military divers and constrains their operations. Manifestations of this condition range from nausea, twitching, and tinnitus to seizures and unresponsiveness, and the latter may lead to death by drowning. The NAVY has a need for better methods to prevent or delay the onset of CNS oxygen toxicity (CNSOT) and to safely expand the scope of diving operations. It is the broad objective of this study to generate information that will enhance warfighter safety and performance in relevant NAVY operations by reducing the risk of CNS oxygen toxicity. It is known that nutritional ketosis through a diet with a high fat-to-carbohydrate ratio (ketogenic diet) can reduce the frequency and severity of epileptic seizures in humans, and a recent animal study has shown that dietary ketosis also delays the onset of CNSOT. In recent years, ketone ester food products ketone esters have been made commercially available which may elevate circulating ketone levels. The investigators aim to investigate whether ketosis from commercially available ketogenic food products prior to a dive will delay the onset of CNSOT. The first aim of this study will be to determine the effect of ketone food product ingestion on serum ketone levels, and document any relevant side effects. Post-ingestion ketone levels will be trended for 3 different ketone food product regimens in 15 total subjects. Data will be used to select the optimal ketone food product strategy to investigate in the second aim. This second aim will be to evaluate the primary hypothesis, that pre-dive ketone food products will prolong latency to CNSOT. To assess this, 20 subjects will be studied in a randomized, controlled, double-blind, crossover methodology. After consuming either the ketone food product or placebo, each subject will complete an immersed, head out hyperbaric oxygen exposure while exercising on an underwater cycle ergometer at 2.06 ATA (35 fsw) until oxygen toxicity symptoms develop or the maximum time limit of 120 minutes is reached. The experiment will be repeated on a different day by each subject after consuming the opposite (ketone food products or placebo). Primary outcome will be time to manifestation of CNSOT. Physiologic monitoring throughout the study will provide secondary endpoints such as cognitive performance, sympathetic nervous system stimulation via electrodermal activity, electroencephalography, cardiorespiratory measures and end-tidal CO2/O2/N2; all adding to our understanding of CNSOT physiology which may guide future mitigation and monitoring strategies. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05831228
Study type Interventional
Source Duke University
Contact
Status Enrolling by invitation
Phase N/A
Start date September 1, 2023
Completion date March 30, 2024

See also
  Status Clinical Trial Phase
Completed NCT05508308 - Automated Versus Manual Control Of Oxygen For Preterm Infants On Continuous Positive Airway Pressure In Nigeria N/A
Recruiting NCT04136717 - Influence of FreeO2 on Percentage of Time Within Oxygen Saturation Target Using Noninvasive Ventilation (NIV) and Continuous Positive Airway Pressure (CPAP) for Patients Admitted for AECOPD or Bariatric Surgery N/A
Active, not recruiting NCT04133740 - Oxygenation Targets in Cardiac Surgery Patients - a Before-and-after Study Phase 4
Completed NCT03653325 - ORI to Reduce Hyperoxia After Out Hospital Cardiac Arrest N/A
Recruiting NCT05761756 - Oxygen Toxicity: Mechanisms in Humans N/A
Completed NCT02698020 - Optimized Oxygen Delivery During General Anesthesia in Newborn Infants N/A
Recruiting NCT05590130 - Comparison of Two Oxygenation Targets With Two Different Oximeters - Impact on Oxygen Flow Rates and Oxygenation N/A
Terminated NCT03665259 - Lower Inspiratory Oxygen Fraction for Preoxygenation N/A
Completed NCT03114176 - Effects of Ketogenic Diet in Divers Breathing Enriched Air Nitrox N/A
Enrolling by invitation NCT05801120 - Effects of Pre-dive Ketone Food Products on Latency to CNS Oxygen Toxicity (Aim 1) N/A
Recruiting NCT05737407 - Lung Ultrasound Guided Choice of Best Positive End-Expiratory Pressure in Neonatal Anesthesia N/A
Recruiting NCT04802629 - Fetal Haemoglobin and Cerebral and Peripheral Oxygenation.
Completed NCT03174002 - Handling Oxygenation Targets in the Intensive Care Unit Phase 4
Recruiting NCT03937622 - Northern Survey on Therapeutic Oxygen Prescription
Completed NCT03453294 - Effect of THRIVE During Apneic Oxygenation in General Anesthesia on Biomarkers N/A
Completed NCT03754985 - Hyperbaric Oxygen Therapy Effects on Pulmonary Functions
Completed NCT03789396 - Pilot Study of Targeted Normoxia in Critically Ill Trauma Patients
Completed NCT03625700 - Supplementary Oxygen in Surgical and Medical Wards Evaluated by 30-day Mortality
Completed NCT05088772 - Pulmonary Function After Hyperbaric Oxygen Therapy
Recruiting NCT05414370 - Hyperoxia Induced Pulmonary Inflammation and Organ Injury: a Human in Vivo Model N/A