Ovarian Cancer Clinical Trial
— CO-MOULDOfficial title:
Spatial Radiogenomics of Ovarian Cancer: Implementation of a Lesion-specific 3D-printed Mould Pipeline in the Clinical Workflow for Image-guided Tissue Multi-sampling of Ovarian Tumours
NCT number | NCT06324175 |
Other study ID # | 6353 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | February 1, 2024 |
Est. completion date | December 31, 2026 |
The biological spatial and temporal heterogeneity of High Grade Serous Ovarian Carcinoma (HGSOC) severely impacts the effectiveness of therapies and is a determinant of poor outcomes. Current histological evaluation is made on a single tumour sample from a single disease site per patient thus ignoring molecular heterogeneity at the whole-tumour level, key for understanding and overcoming chemotherapy resistance. Imaging can play a crucial role in the development of personalised treatments by fully capturing the disease's heterogeneity. Radiomics quantify the image information by capturing complex patterns related to the tissue microstructure. This information can be complemented with clinical data, liquid biopsies, histological markers and genomics ("radiogenomics") potentially leading to a better prediction of treatment response and outcome. However, the extracted quantitative features usually represent the entire tumour, ignoring the spatial context. On the other hand, radiomics-derived imaging habitats characterize morphologically distinct tumour areas and are more appropriate for monitoring the changes in the tumour microenvironment over the course of therapy. In order to successfully incorporate the habitat-imaging approach to the clinic, histological and biological validation are crucial. However, histological validation of imaging is not a trivial task, due to issues such as unmatched spatial resolution, tissue deformations, lack of landmarks and imprecise cutting. Patient-specific three-dimensional (3D) moulds are an innovative tool for accurate co-registration between imaging and histology. The aim of this study is to optimize and integrate such an automated computational 3D-mould co-registration approach in the clinical work-flow in patients with HGSOC. The validated radiomics-based tumour habitats will also be used to guide tissue sampling to decipher their underlying biology using genomics analysis and explore novel prediction markers.
Status | Recruiting |
Enrollment | 24 |
Est. completion date | December 31, 2026 |
Est. primary completion date | December 31, 2025 |
Accepts healthy volunteers | No |
Gender | Female |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Patients with suspected HGSOC scheduled to undergo primary debulking surgery (PDS) or interval debulking surgery (IDS) will be recruited in the study. Prior histopathological confirmation of HGSOC will be required for IDS. The PDS cases without prior histological diagnosis will be selected on the basis of clinical suspicion (elevated serum CA125 and CT imaging). Exclusion Criteria: - Patients less than 18 Years old - Pregnancy - Non-serous high grade epithelial ovarian cancer (serous low grade, mucinous, clear cell carcinoma, endometrioid or non-epithelial ovarian cancer) - Early stage disease (I and II stage) - CT or MRI scan not available |
Country | Name | City | State |
---|---|---|---|
Italy | Advanced Radiology Center | Roma |
Lead Sponsor | Collaborator |
---|---|
Fondazione Policlinico Universitario Agostino Gemelli IRCCS |
Italy,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Implementation of the 3D printing pipeline in the clinical setting for recurrent HGSOC | Tumour will be segmented on the preoperative CT/MRI scan and 3D printed mould will be created from 2D images using a 3D printed machine. The 3D printed mould will be used to better oriented and analized the tumour in the surgery theatre in order to correlate anatomophathological features with Radiomics features that will be analyzed from the CT/MRI scans afterwords. | 3 years | |
Secondary | Biological validation of spatial radiomics in HGSOC | Radiomic spatial texture analysis, such as the one shown in Figure 1B, will be used. The produced radiomics maps will then guide us in identifying the best biopsy sites, by recognizing phenotypically-distinct locations within complex tumours that are most likely to contain crucial information about diagnosis and treatment prognosis. The imaging information will then be linked to the genomic information of each distinct tumour habitat thus shedding more light on the underlying genomic heterogeneity of ovarian cancer and how it is phenotypically presented. | 3 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02526017 -
Study of Cabiralizumab in Combination With Nivolumab in Patients With Selected Advanced Cancers
|
Phase 1 | |
Withdrawn |
NCT05201001 -
APX005M in Patients With Recurrent Ovarian Cancer
|
Phase 2 | |
Completed |
NCT02963831 -
A Study to Investigate ONCOS-102 in Combination With Durvalumab in Subjects With Advanced Peritoneal Malignancies
|
Phase 1/Phase 2 | |
Not yet recruiting |
NCT06376253 -
A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers
|
Phase 1 | |
Recruiting |
NCT05489211 -
Study of Dato-Dxd as Monotherapy and in Combination With Anti-cancer Agents in Patients With Advanced Solid Tumours (TROPION-PanTumor03)
|
Phase 2 | |
Recruiting |
NCT03412877 -
Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer
|
Phase 2 | |
Active, not recruiting |
NCT03667716 -
COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors.
|
Phase 1 | |
Active, not recruiting |
NCT03170960 -
Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT05156892 -
Tamoxifen and SUBA-Itraconzole Combination Testing in Ovarian Cancer
|
Phase 1 | |
Suspended |
NCT02432378 -
Intensive Locoregional Chemoimmunotherapy for Recurrent Ovarian Cancer Plus Intranodal DC Vaccines
|
Phase 1/Phase 2 | |
Recruiting |
NCT04533763 -
Living WELL: A Web-Based Program for Ovarian Cancer Survivors
|
N/A | |
Active, not recruiting |
NCT03371693 -
Cytoreductive Surgery(CRS) Plus Hyperthermic Intraperitoneal Chemotherapy(HIPEC) With Lobaplatin in Advanced and Recurrent Epithelial Ovarian Cancer
|
Phase 3 | |
Withdrawn |
NCT03032614 -
Combination of Carboplatin, Eribulin and Veliparib in Stage IV Cancer Patients
|
Phase 2 | |
Completed |
NCT02019524 -
Phase Ib Trial of Two Folate Binding Protein Peptide Vaccines (E39 and J65) in Breast and Ovarian Cancer Patients
|
Phase 1 | |
Completed |
NCT01936363 -
Trial of Pimasertib With SAR245409 or Placebo in Ovarian Cancer
|
Phase 2 | |
Terminated |
NCT00788125 -
Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT05059522 -
Continued Access Study for Participants Deriving Benefit in Pfizer-Sponsored Avelumab Parent Studies That Are Closing
|
Phase 3 | |
Active, not recruiting |
NCT04383210 -
Study of Seribantumab in Adult Patients With NRG1 Gene Fusion Positive Advanced Solid Tumors
|
Phase 2 | |
Terminated |
NCT04586335 -
Study of CYH33 in Combination With Olaparib an Oral PARP Inhibitor in Patients With Advanced Solid Tumors.
|
Phase 1 | |
Terminated |
NCT03146663 -
NUC-1031 in Patients With Platinum-Resistant Ovarian Cancer
|
Phase 2 |