Out-Of-Hospital Cardiac Arrest Clinical Trial
Official title:
Can Non-invasive Multi-wavelength Monitoring of Out of Hospital Cardiac Arrest Having a Sustained ROSC Reduce Hyperoxia and Hypoxia During Hospital Transfer
The investigator's research proposal is a randomized controlled study evaluating two different monitoring strategies to titrate FiO2 in order to rapidly and safely achieve optimal SatO2 targets during early ROSC of non-traumatic OHCA in adults. Primary hypothesis: Monitoring transport to hospital of sustained ROSC of OHCA patients using multiple wavelength detectors that allow ORI continuous measurement will reduce hyperoxia and hypoxia burden associated with transport. Secondary hypothesis: Multiple wavelength detectors allowing ORI continuous measurement will reduce hyperoxia at ER admission as measured via blood gas analysis. Tertiary study hypothesis: Multiple wavelength detectors allowing ORI continuous measurement will reduce reperfusion neuronal injury measured through NSE levels at 48h post ROSC
Oxygen has a pivotal role in emergency medicine as a lifesaving therapy in numerous situations. In order to avoid hypoxia-related morbidity and mortality, oxygen is delivered in emergencies in a liberal way, even when hypoxia is not confirmed. Nevertheless, as every medication, experimental and clinical studies have highlighted potential side effects of high oxygen tension that could worsen outcome. Cardiac arrest is the archetypal situation given the urgent need of rapid oxygen delivery to organs. However, this global ischemia-reperfusion syndrome produces high amounts ROS that could magnify the damages of the ischemic period and might be significantly increased by high oxygen tension. Thus, hyperoxia in the post-resuscitation context of cardiac arrest is an important topic. Advances in noninvasive oxygen monitoring can now allow for non-invasive monitoring of hyperoxia in pre-hospital settings. So far, despite the recognized urgent need for advancements in the management of oxygen delivery during early ROSC, studies have been exclusively retrospective and interventional studies failed to safely titrate oxygen in the prehospital context possibly due to lack of technological support7. The aim of investigator's is therefore to determine whether technological advances can allow for a safer and more accurate delivery of oxygen in the early ROSC of OHCA, reducing ROS damage. Further research should then, if our hypothesis would be confirmed, reproduce the data in different settings and further investigate whether better oxygen administration during early ROSC improves patients' outcome. Patient showing a sustained ROSC after an OHCA will be monitored according to current hospital protocols during pre-hospital transport. In addition to traditional monitoring patients will all be monitored with a Masimo device allowing continuous non-invasive measurement of ORI. Patients will be randomly assigned to blinded measurement of ORI (not allowing the clinician to visualize collected information through additional monitoring) or bi-modal monitoring (allowing the clinician to gather information both form traditional monitoring and from additional monitoring showing ORI values). In the latter case clinicians participant will be encouraged to target an ORI lower than 0.5 together with a SatO2>91%. In case of blinded measurement of ORI clinicians will manage ventilation according to standard SatO2 targets (94-98%). Ventilator settings in both groups will be managed in order to target an end-tidal CO2 (ETCO2) between 35 and 45mmHg. An arterial blood sample and a central body temperature will be taken at hospital admission. The arterial blood sample will be analysed for glucose, pH, PaCO2 and PaO2 and corrected for temperature in order to calculate dissolved oxygen. A second blood sample will be done at 48h to measure NSE. A standardised form will be filled by the pre-hospital physician participant gathering information about no flow time, low flow time, first assessed rhythm, BMI, smoking habit and patient demographics. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05434910 -
Blood Pressure and Cerebral Blood Flow After Cardiac Arrest
|
N/A | |
Active, not recruiting |
NCT03700125 -
Pre-hospital ECMO in Advanced Resuscitation in Patients With Refractory Cardiac Arrest. ( SUB30 )
|
N/A | |
Completed |
NCT02527694 -
CPR Quality Between Flexible Stretcher and Standard Stretcher in OHCA
|
N/A | |
Completed |
NCT02899507 -
Prophylactic Antibiotics in Comatose Survivors of Out-of-hospital Cardiac Arrest
|
Phase 4 | |
Recruiting |
NCT02184468 -
Survival Study After Out-of-hospital Cardiac Arrest
|
N/A | |
Completed |
NCT04085692 -
Dispatcher-Assisted CPR: Low-Dose, High-Frequency Simulation-Based Training
|
N/A | |
Recruiting |
NCT05029167 -
REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study)
|
N/A | |
Completed |
NCT04080986 -
DOuble SEquential External Defibrillation for Refractory VF
|
N/A | |
Completed |
NCT04058925 -
Tissue Oxygenation During Cardiopulmonary Resuscitation as a Predictor of Return of Spontaneous Circulation
|
||
Enrolling by invitation |
NCT05113706 -
Does Bystanders Emotional State Influence Dispatcher-assisted Cardiopulmonary?Resuscitation
|
||
Completed |
NCT04219306 -
Machine Learning Assisted Recognition of Out-of-Hospital Cardiac Arrest During Emergency Calls.
|
N/A | |
Completed |
NCT03881865 -
P25/30 SSEPs and Neurological Prognosis After Cardiac Arrest
|
||
Recruiting |
NCT04993716 -
Epidemiological Study on the Management of Out-of-hospital Cardiac Arrest Survivors in Champagne ArDEnnes
|
||
Completed |
NCT05062785 -
Dose-Finding Study of Intranasal Insulin in Healthy Participants Insulin in Healthy Participants
|
Phase 1 | |
Recruiting |
NCT06122337 -
Systemic Evaluation of the Etiologies of Young Adults With Non-traumatic Out-of-hospital Cardiac Arrest
|
||
Not yet recruiting |
NCT04584463 -
Factors Associated With CPC 1-2 in 110 Patients Admitted in French ICU for a Myocardial Infarction Complicated by an OHCA.
|
||
Recruiting |
NCT03355885 -
Early-onset Pneumonia After Out-of-hospital Cardiac Arrest
|
N/A | |
Recruiting |
NCT05132387 -
Wroclaw Out-Of-Hospital Cardiac Arrest Registry
|
||
Recruiting |
NCT02827422 -
A Prospective, Multicenter Registry With Targeted Temperature Management After Out-of-hospital Cardiac Arrest in Korea
|
N/A | |
Completed |
NCT02646046 -
Combining Performance of Call EMS and Simultaneous Chest Compressions in a Lone Rescuer CPR
|
N/A |