Clinical Trials Logo

Clinical Trial Summary

That paramedic core cooling during CPR using a rapid infusion of ice-cold (4 degrees C) large-volume (30mL/kg) normal saline improves outcome at hospital discharge compared with standard care in patients with out-of-hospital cardiac arrest.


Clinical Trial Description

INTRODUCTION:

Pre-hospital cardiac arrest is common and associated with a poor prognosis and only about 8% of patients have a good outcome. For patients who are initially successfully resuscitated by ambulance paramedics and transported to hospital, there is considerable mortality and morbidity. This is largely due to the anoxic brain injury sustained during the cardiac arrest.

One current therapy for the severe anoxic brain injury following out-of-hospital cardiac arrest is therapeutic hypothermia (TH) induced after resuscitation. This treatment was shown to improve outcomes in two clinical trials. The International Liaison Committee on Resuscitation now recommend TH (33°C for 12-24 hours) for patients who remain comatose after resuscitation from cardiac arrest.

However, the optimal timing of TH is still uncertain. The above clinical studies used surface cooling and this delayed TH until after arrival at the hospital. On the other hand, laboratory data has suggested that there is significantly decreased neurological injury if cooling is initiated during CPR.

The current ideal technique for induction of TH during CPR is a rapid intravenous infusion of a large volume of ice-cold fluid. This technique has become established as the cooling method of choice in the pre-hospital setting, the Emergency Department (14) and the Intensive Care Unit.

Previously, we conducted a randomised, controlled trial of paramedic cooling after CPR compared with cooling in the emergency department (ED) (NHMRC study number 236879). This study enrolled 396 patients between 2005 and late 2007. There were 234 patients with an initial cardiac rhythm of ventricular fibrillation (VF) and 163 patients with an initial cardiac rhythm of non-VF (asystole or pulseless electrical activity).

In the post-VF arrest patients, there was a good outcome (discharge to home or to rehabilitation) in both groups of 50%. In the post-non-VF arrest patients, there was a good outcome at hospital discharge of 12% in the paramedic cooled group compared with 9% in the standard care group. The study was stopped at the interim analysis due to a lack of difference in the primary outcome measure (outcome at hospital discharge) between the two groups (futility).

Further analysis of this data revealed that paramedics infused up to 1000mL ambient temperature fluid during CPR prior to enrolment as part of standard paramedic treatment. In addition, the rapid infusion of cold fluid was commenced en-route to hospital. Thus, cooling commenced approximately 30 minutes after paramedic arrival and only just prior to hospital cooling. Although there was a decrease in the core temperatures of the patients allocated to pre-hospital cooling on arrival at the ED, this was a transient effect lasting only approximately 20 minutes. Subsequently, the cooling curves of the patients in both groups were identical. Thus, it was considered unlikely that this transient difference in core temperature could have a measurable effect on outcomes.

Laboratory data suggests that a rapid intravenous infusion of cold fluid during CPR effectively decreases core temperature. Nordmark et al. studied the induction of hypothermia with a large volume of intravenous ice-cold fluid after cardiac arrest during CPR in anaesthetised piglets who were subjected to eight minutes of VF. The mean temperature reduction was 1.6°C in the hypothermic group and 1.1°C in the control group (p=0.009).

There is also laboratory data that cooling during CPR may increase the rate of successful defibrillation. Boddicker et al. examined the success rates of defibrillation in swine cooled to different temperatures. After 8 minutes of VF (with no CPR), the animals were defibrillated with successive shocks as needed and underwent CPR until resumption of spontaneous circulation or no response. First-shock defibrillation success was highest in the hypothermia (33°C) group (6/8 hypothermia versus 1/8 normothermia; P=0.04). None of the 8 animals in the normothermia group achieved resumption of spontaneous circulation compared with 7/8 moderate hypothermia (P=0.001). Coronary perfusion pressure during CPR was not different between the groups, thus this beneficial effect of hypothermia was not due to alteration of coronary perfusion pressure but likely due to changes in the electrophysiological properties of the myocardium. Thus, it appears that mild hypothermia may have a beneficial anti-arrhythmic effect, as well as a neuroprotective effect.

More recently, pilot clinical trials have been undertaken in Europe that suggest that cooling during CPR by paramedics is feasible. For example, Bruel et al studied the feasibility and safety of a rapid infusion of 2000mL of normal saline at 4°C during CPR. A total of 33 patients were included in the study of whom eight patients presented with VF as the initial cardiac rhythm. After intravenous cooling, the temperature in the patients decreased by a mean of 2.1°C.

In a similar pilot study, Kämäräinen et al. cooled seventeen adult patients with out-of-hospital cardiac arrest during CPR. A return of circulation was achieved in 13 patients (76%). The temperature of the patients on hospital admission was a mean of 33.8°C and the mean infused volume of cold fluid was 1571mL. The authors concluded that induction of therapeutic hypothermia during prehospital CPR was feasible and apparently well tolerated.

More recent data specifically examining respiratory function in 52 patients treated with large volume, ice cold saline has indicated that there is no adverse effect on respiratory function.

Given this supportive laboratory and preliminary clinical data, and our previous experience in running a large pre-hospital trial in cardiac arrest patients, we propose to conduct a definitive randomized, controlled trial of paramedic cooling during CPR compared with standard care including cooling after arrival at the hospital.

In the treatment arm, paramedics will undertake immediate cooling during cardiac arrest, using a large volume (20mL/kg, followed by 10mL/kg) intravenous bolus of ice-cold saline. This strategy will overcome the delay in treatment that was found in our previous study. Thus, cooling will commence significantly earlier, possibly resulting in significantly improved rates of resuscitation and better neurological outcomes.

In the control arm, patients will be resuscitated using current protocols and be cooled after arrival at the hospital (the current standard of care).

The trial will run as two parallel clinical trials because of the marked difference in outcomes between patients with VF as the initial cardiac rhythm and patients with non-VF as the initial cardiac rhythm.

STUDY DETAILS

HYPOTHESIS:

That paramedic core cooling during CPR using a rapid infusion of ice-cold (4 degrees C) large volume (30mL/kg total) normal saline improves outcome at hospital discharge compared with standard care in patients with out-of-hospital cardiac arrest. ;


Study Design

Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Single Blind (Subject), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01173393
Study type Interventional
Source Ambulance Victoria
Contact
Status Completed
Phase Phase 3
Start date July 2010
Completion date December 2014

See also
  Status Clinical Trial Phase
Recruiting NCT05434910 - Blood Pressure and Cerebral Blood Flow After Cardiac Arrest N/A
Active, not recruiting NCT03700125 - Pre-hospital ECMO in Advanced Resuscitation in Patients With Refractory Cardiac Arrest. ( SUB30 ) N/A
Completed NCT02527694 - CPR Quality Between Flexible Stretcher and Standard Stretcher in OHCA N/A
Completed NCT02899507 - Prophylactic Antibiotics in Comatose Survivors of Out-of-hospital Cardiac Arrest Phase 4
Recruiting NCT02184468 - Survival Study After Out-of-hospital Cardiac Arrest N/A
Completed NCT04085692 - Dispatcher-Assisted CPR: Low-Dose, High-Frequency Simulation-Based Training N/A
Recruiting NCT05029167 - REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study) N/A
Completed NCT04080986 - DOuble SEquential External Defibrillation for Refractory VF N/A
Completed NCT04058925 - Tissue Oxygenation During Cardiopulmonary Resuscitation as a Predictor of Return of Spontaneous Circulation
Enrolling by invitation NCT05113706 - Does Bystanders Emotional State Influence Dispatcher-assisted Cardiopulmonary?Resuscitation
Completed NCT04219306 - Machine Learning Assisted Recognition of Out-of-Hospital Cardiac Arrest During Emergency Calls. N/A
Completed NCT03881865 - P25/30 SSEPs and Neurological Prognosis After Cardiac Arrest
Recruiting NCT04993716 - Epidemiological Study on the Management of Out-of-hospital Cardiac Arrest Survivors in Champagne ArDEnnes
Completed NCT05062785 - Dose-Finding Study of Intranasal Insulin in Healthy Participants Insulin in Healthy Participants Phase 1
Recruiting NCT06122337 - Systemic Evaluation of the Etiologies of Young Adults With Non-traumatic Out-of-hospital Cardiac Arrest
Not yet recruiting NCT04584463 - Factors Associated With CPC 1-2 in 110 Patients Admitted in French ICU for a Myocardial Infarction Complicated by an OHCA.
Recruiting NCT03355885 - Early-onset Pneumonia After Out-of-hospital Cardiac Arrest N/A
Recruiting NCT05132387 - Wroclaw Out-Of-Hospital Cardiac Arrest Registry
Recruiting NCT02827422 - A Prospective, Multicenter Registry With Targeted Temperature Management After Out-of-hospital Cardiac Arrest in Korea N/A
Completed NCT02646046 - Combining Performance of Call EMS and Simultaneous Chest Compressions in a Lone Rescuer CPR N/A