Clinical Trials Logo

Clinical Trial Summary

Dose distribution calculations for proton therapy are more accurate when based on DE-CT than on SE-CT. It is however unclear what the quantitative benefit of repeated DE-CT calculations is for lung cancer patients.


Clinical Trial Description

In order to calculate the dose distribution of protons adequately, accurate estimations of the stopping power ratio (SPR) medium to water, are required. Using a conversion from single energy CT (SE-CT) images results in an uncertainty in the SPR of at least 3-4%. This uncertainty results in in the use of larger margins around the clinical target volume (CTV) and hence more dose to the organs at risk (OAR). It also effects in the conservative use of beam directions, which are often sub-optimal, to avoid irradiating normal tissues.

Dual energy CT (DE-CT) improves the accuracy of the SPR and therefore the proton range estimation.

An evaluation of the proton range for several tissues using SE-CT and DE-CT as input to Monte Carlo (MC) simulations showed on average improvements in range prediction from 0.1% to 2.1% when using DECT instead of SECT, but in several phantoms and also versus proton-CT, the errors on SE-CT based proton stopping power ratios are reported to be more than 7 %.

A limitation of these studies is that most of them were performed in phantoms. In the first clinical data set on five patients with base of skull tumours, it was reported that although the SPR estimation was indeed better for DE-CT than for SE-CT, its clinical relevance was unclear. However, in the same study, phantom measurements showed a large uncertainty of the SPR in the lung. This is due to the large heterogeneity of the lungs and the huge difference in the density of the lungs compared to the mediastinum, the tumour and the chest cavity.

It is therefore important to study the SPR differences of SE-CT compared to DE-CT in lung cancer patients and the impact on the dose distribution especially in the context of adaptive radiotherapy. As during the course of concurrent chemotherapy and radiotherapy, which is the standard treatment in the majority of stage III lung cancer patients, important anatomical changes may occur, it is also of clinical relevance to determine the influence of repeated dose calculations on DE-CT. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02844140
Study type Interventional
Source Maastricht Radiation Oncology
Contact
Status Withdrawn
Phase N/A
Start date September 2016
Completion date December 2017

See also
  Status Clinical Trial Phase
Recruiting NCT05094804 - A Study of OR2805, a Monoclonal Antibody Targeting CD163, Alone and in Combination With Anticancer Agents Phase 1/Phase 2
Recruiting NCT05707286 - Pilot Study to Determine Pro-Inflammatory Cytokine Kinetics During Immune Checkpoint Inhibitor Therapy
Recruiting NCT04258137 - Circulating DNA to Improve Outcome of Oncology PatiEnt. A Randomized Study N/A
Completed NCT01945021 - Phase II Safety and Efficacy Study of Crizotinib in East Asian Patients With ROS1 Positive, ALK Negative Advanced NSCLC Phase 2
Completed NCT04487457 - Prospective Study to Evaluate the Blood Kinetics of Immune Cells and Immunosuppressive Cytokines After Exposure to an Immunity Checkpoint Inhibitor (ICI): Study of the Impact of Chemotherapy
Terminated NCT04022876 - A Study of ALRN-6924 for the Prevention of Chemotherapy-induced Side Effects (Chemoprotection) Phase 1
Recruiting NCT05898763 - TEIPP Immunotherapy in Patients With NSCLC Phase 1/Phase 2
Recruiting NCT05532696 - Phase 1b/2 Study to Evaluate ABT-101 in Solid Tumor and NSCLC Patients Phase 1/Phase 2
Completed NCT04311034 - A Study of RC48-ADC in Subjects With Advanced Non-small Cell Lung Cancer Phase 1/Phase 2
Active, not recruiting NCT03177291 - Pirfenidone Combined With Standard First-Line Chemotherapy in Advanced-Stage Lung NSCLC Phase 1
Terminated NCT03257722 - Pembrolizumab + Idelalisib for Lung Cancer Study Phase 1/Phase 2
Completed NCT00349089 - Trial on Refinement of Early Stage Lung Cancer Adjuvant Therapy Phase 2
Completed NCT05116891 - A Phase 1/2 Study of CAN04 in Combination With Different Chemotherapy Regimens in Subjects With Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT04571632 - Clinical Trial of SBRT and Systemic Pembrolizumab With or Without Avelumab/Ipilimumab+ Dendritic Cells in Solid Tumors Phase 2
Terminated NCT03599518 - DS-1205c With Gefitinib for Metastatic or Unresectable Epidermal Growth Factor Receptor (EGFR)-Mutant Non-Small Cell Lung Cancer Phase 1
Not yet recruiting NCT06020989 - Lazertinib and Chemotherapy Combination in EGFR-mutant NSCLC Patients Without ctDNA Clearance After lead-in Lazertinib Monotherapy Phase 2
Withdrawn NCT03982134 - PDR001 + Panobinostat for Melanoma and NSCLC Phase 1
Withdrawn NCT03574649 - QUILT-2.024: Phase 2 Neoadjuvant, Consolidation, and Adjuvant Combination NANT Immunotherapy Versus Standard of Care in Subjects With Resectable Non-small Cell Lung Cancer Phase 2
Completed NCT03780010 - Study of TRC105 + Paclitaxel/Carboplatin and Bevacizumab in Patients With NSCLC Phase 1
Terminated NCT02628535 - Safety Study of MGD009 in B7-H3-expressing Tumors Phase 1