Neuromuscular Blockade Clinical Trial
Official title:
Effect of Deep Neuromuscular Blockade on Surgical Conditions and Recovery After Robotic Radical Prostatectomy: a Prospective Randomized Study
Basic requirement for safe performance of the robotic intra-abdominal surgery is a calm and clear surgical field after the introduction of a capnoperitoneum. That can be enabled by a neuromuscular blockade. Provision of standard neuromuscular blockade is a compromise between optimal surgical conditions (sufficiently deep block) and capability to antagonize the block rapidly at the end of the surgery. With rocuronium, it is possible to maintain deep neuromuscular blockade safely until the very end of the surgery, and unlike with spontaneous recovery or reversal of the block with neostigmine, administration of sugammadex at the end of the surgery will enable quick and consistent reversal of the block. Project is focused on comparison of the parameters of deep and standard neuromuscular blockade - surgical conditions (primary endpoint), quality of recovery and turnover time (secondary endpoints).
Status | Recruiting |
Enrollment | 80 |
Est. completion date | March 2016 |
Est. primary completion date | March 2016 |
Accepts healthy volunteers | No |
Gender | Male |
Age group | 19 Years and older |
Eligibility |
Inclusion Criteria: - Age over 18 years - Informed consent - Elective robotic radical prostatectomy - American Society of Anesthesiologists (ASA) status 1-3 Exclusion Criteria: - Age under 18 years - American Society of Anesthesiologists (ASA) status over 3 - Indication for rapid sequence induction, signs of difficult airway severe neuromuscular, liver or renal disease - Known allergy to drugs used in the study - Malignant hyperthermia (medical history) |
Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver), Primary Purpose: Treatment
Country | Name | City | State |
---|---|---|---|
Czech Republic | Dept. of Anesthesiology and Intensive Care Medicine, University Hospital Olomouc | Olomouc | |
Czech Republic | Dept. of Anesthesiology, Perioperative Medicine and Intensive Care, J. E. Purkinje University, Masaryk Hospital | Usti nad Labem |
Lead Sponsor | Collaborator |
---|---|
Palacky University | Masaryk Hospital, Usti nad Labem, University Hospital Olomouc |
Czech Republic,
Boon M, Martini CH, Aarts LP, Bevers RF, Dahan A. Effect of variations in depth of neuromuscular blockade on rating of surgical conditions by surgeon and anesthesiologist in patients undergoing laparoscopic renal or prostatic surgery (BLISS trial): study — View Citation
Ding L, Zhang H, Mi W, He Y, Zhang X, Ma X, Li H. [Effects of dexmedetomidine on recovery period of anesthesia and postoperative cognitive function after robot-assisted laparoscopicradical prostatectomy in the elderly people]. Zhong Nan Da Xue Xue Bao Yi — View Citation
Ding L, Zhang H, Mi W, Sun L, Zhang X, Ma X, Li H. [Effects of carbon dioxide pneumoperitoneum and steep Trendelenburg positioning on cerebral blood backflow during robotic radical prostatectomy]. Nan Fang Yi Ke Da Xue Xue Bao. 2015 May;35(5):712-5. Chine — View Citation
Dogra PN, Saini AK, Singh P, Bora G, Nayak B. Extraperitoneal robot-assisted laparoscopic radical prostatectomy: Initial experience. Urol Ann. 2014 Apr;6(2):130-4. doi: 10.4103/0974-7796.130555. — View Citation
Donati F, Brull SJ. More muscle relaxation does not necessarily mean better surgeons or "the problem of muscle relaxation in surgery". Anesth Analg. 2014 Nov;119(5):1019-21. doi: 10.1213/ANE.0000000000000429. — View Citation
Dubois PE, Putz L, Jamart J, Marotta ML, Gourdin M, Donnez O. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol. 2014 Aug;31(8):430-6. doi: 10.1097/EJA.000000000000009 — View Citation
Gurusamy KS, Vaughan J, Davidson BR. Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2014 Mar 18;3:CD006930. doi: 10.1002/14651858.CD006930.pub3. Review. — View Citation
Kopman AF, Naguib M. Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg. 2015 Jan;120(1):51-8. doi: 10.1213/ANE.0000000000000471. Review. — View Citation
Lindekaer AL, Halvor Springborg H, Istre O. Deep neuromuscular blockade leads to a larger intraabdominal volume during laparoscopy. J Vis Exp. 2013 Jun 25;(76). doi: 10.3791/50045. — View Citation
Martini CH, Boon M, Bevers RF, Aarts LP, Dahan A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth. 2014 Mar;112(3):498-505. doi: 10.1093/bja/aet377. Epub 2013 Nov 15. — View Citation
Royse CF, Newman S, Chung F, Stygall J, McKay RE, Boldt J, Servin FS, Hurtado I, Hannallah R, Yu B, Wilkinson DJ. Development and feasibility of a scale to assess postoperative recovery: the post-operative quality recovery scale. Anesthesiology. 2010 Oct; — View Citation
Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Gätke MR. Optimized surgical space during low-pressure laparoscopy with deep neuromuscular blockade. Dan Med J. 2013 Feb;60(2):A4579. — View Citation
Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Lindekaer AL, Riber C, Gätke MR. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014 — View Citation
Vijayaraghavan N, Sistla SC, Kundra P, Ananthanarayan PH, Karthikeyan VS, Ali SM, Sasi SP, Vikram K. Comparison of standard-pressure and low-pressure pneumoperitoneum in laparoscopic cholecystectomy: a double blinded randomized controlled study. Surg Lapa — View Citation
* Note: There are 14 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Surgical condition | Surgical rating score (SRS) - surgical condition will be evaluated by surgeon every 15 minutes on predefined five point scale (excellent - above average - average - below average - poor). For each patient, the final score will be the average of all 15 min SRS values. | Every 15 minutes during surgery until final suture | No |
Secondary | Quality of recovery | Speed of clinical recovery by using Post-Operative Quality Recovery Scale (www.pqrsonline.org). PQRS will be evaluated at following time points: preoperatively, day (D) 1, D3, D7, month (M) 1, M2. |
2 months | No |
Secondary | "Ready to leave operating room (OR)" time | "Ready to leave OR time" will be defined as a time period (in minutes) from the time point of completing surgery to the time point, when patient is ready to leave OR to the facility providing postanesthesia care. | Period of patient's presence at OR | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05558969 -
The Effect of Magnesium Use in Reversal of Neuromuscular Block With Sugammadex
|
N/A | |
Completed |
NCT03168308 -
Sugammadex vs. Neostigmine for Neuromuscular Blockade Reversal in Thoracic Surgical Patients
|
Phase 4 | |
Not yet recruiting |
NCT03978780 -
Erector Spinae Block vs. Placebo Block Study
|
N/A | |
Completed |
NCT02892045 -
Mindray Neuromuscular Transmission Transducer
|
||
Completed |
NCT02912039 -
Electromyographic Assessment of the TetraGraph in Normal Volunteers
|
||
Completed |
NCT03427385 -
Minimum Local Anesthetic Dose for Adductor Canal Block
|
N/A | |
Completed |
NCT01450813 -
The Effect of Neuromuscular Blockade on the Composite Variability Index (CVI) During Laryngoscopy
|
N/A | |
Completed |
NCT00535496 -
Relation Between TOF-Watch® SX and a Peripheral Nerve Stimulator After 4.0 mg.Kg-1 Sugammadex (P05698)
|
Phase 3 | |
Recruiting |
NCT05794503 -
Postoperative Urinary Retention After Reversal of Neuromuscular Block by Neostigmine Versus Sugammadex
|
Early Phase 1 | |
Not yet recruiting |
NCT05993390 -
Pharmacological Reversal of Neuromuscular Blockade in Critically Ill Patients
|
N/A | |
Recruiting |
NCT04609410 -
Bleeding in Laparoscopic Liver Surgery
|
N/A | |
Terminated |
NCT03649672 -
The Validity and Tolerability of Awake Calibration of the TOF Watch SX Monitor
|
N/A | |
Completed |
NCT05687253 -
Evaluation of Intubation Conditions Following BX1000 or Rocuronium in Subjects Undergoing Surgery
|
Phase 2 | |
Completed |
NCT05474638 -
Comparison of Mechanomyographic 100 Versus 200 Hz 5 Second Tetanic Fade Ratios During Neuromuscular Block Recovery
|
N/A | |
Completed |
NCT05120999 -
Comparison of Onset of Neuromuscular Blockade With Electromyographic and Acceleromyographic Monitoring
|
||
Completed |
NCT03572413 -
The Effect of Low Pressure Pneumoperitoneum During Laparoscopic Colorectal Surgery on Innate Immune Homeostasis.
|
Phase 4 | |
Completed |
NCT03608436 -
The Effect of Low Pressure Pneumoperitoneum During Laparoscopic Colorectal Surgery on Early Quality of Recovery
|
Phase 4 | |
Recruiting |
NCT02930629 -
Residual Block in Postoperative Anaesthetic Care Unit
|
N/A | |
Completed |
NCT02932254 -
Magnesium Sulfate Effect Following the Reversal of Neuromuscular Blockade Induced by Rocuronium With Sugammadex
|
Phase 4 | |
Completed |
NCT01828385 -
Effect of Magnesium on the Recovery Time of Neuromuscular Blockade With Sugammadex
|
Phase 4 |