Clinical Trials Logo

Neurodevelopmental Abnormality clinical trials

View clinical trials related to Neurodevelopmental Abnormality.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05996211 Recruiting - Clinical trials for Congenital Heart Disease

The Swiss Neurodevelopmental Outcome Registry for Children With CHD

SwissORCHID
Start date: January 1, 2019
Phase:
Study type: Observational [Patient Registry]

Introduction: Congenital heart disease (CHD) is the most frequent birth defect. As survival has significantly improved, attention has turned to neurodevelopmental outcomes of children undergoing heart surgery in early infancy. Since multiple risk factors contribute to neurodevelopmental alterations, a nationwide registry collecting data on medical characteristics, interventions, clinical course and neurodevelopment until school-age is needed to improve the quality of management, identify risk- and protective factors affecting neurodevelopment, and facilitate multicenter trials. Methods and analysis: The Swiss Outcome Registry for CHIldren with severe congenital heart Disease (ORCHID) is a nationwide, prospective, population-based patient registry developed (1) to collect baseline characteristics and clinical data of CHD patients operated with bypass-surgery or hybrid procedures in the first 6 weeks of life in Switzerland, (2) to monitor long-term neurodevelopment, and (3) to relate clinical characteristics and neurodevelopment to identify risk and protective factors in these children. This registry started data collection relating to pregnancy, birth, preoperative course, catheter-based and surgical treatment, postoperative course and reinterventions in 2019. The primary outcome includes standardised neurodevelopmental assessments at 9 to 12 months, 18 to 24 months and 5.5 to 6 years. Investigators expect to include 80 to 100 children per year. Correlation and regression analyses will be used to investigate risk- and protective factors influencing neurodevelopment. Ethics and dissemination of results: Swiss ORCHID received support by the Accentus Charitable Foundation, the Anna Mueller Grocholoski Foundation, the Swiss Society of Pediatric Cardiology, and the Corelina - Foundation and was approved by the cantonal ethics committees. Findings will be presented at national and international scientific meetings, and published in peer-reviewed journals. Results will also be shared with patient organizations, primary health care providers, and public health stakeholders to ensure a widespread dissemination of the results.

NCT ID: NCT05186155 Recruiting - Clinical trials for Retinopathy of Prematurity

Analysis of Ocular and Neurodevelopmental Function for Retinopathy of Prematurity

Start date: January 1, 2019
Phase:
Study type: Observational

The goal of this research project is to identify the long-term outcome of neurodevelopment in patients with retinopathy of prematurity(ROP) and the treatment of anti-vascular endothelial growth factor (VEGF) such as intravitreal injection of bevacizumab (IVB), ranibizumab, or aflibercept.Investigators propose this study hopefully to have a better understanding of the long-term safety of anti-VEGF on the treatment of ROP. Studies in both animalsand humans have found evidence of systemic bevacizumab exposure after IVB. In an animal study, IVB at an early age could result in more systemic bevacizumab exposure. Our study has further shown that VEGF levels in ROP infants were depressed for 8 weeks after IVB. VEGF plays an important role in neurogenesis in embryos and preterm newborns. In previous reports, blocking VEGF-A expression has been shown to impair brain vascularization and lead to neuron apoptosis in the retina. In addition, VEGF has been found to be lower in preterm pups compared to term pups, and this has been proposed to relate to the neurodevelopmental delay and reduced growth of the cerebral cortex in premature infants. Since neurogenesis may continue in the third trimester, further inhibition of serum VEGF in preterm newborns may have long-term effects on the development of the central nervous system and other systems. Currently, most studies reported neurodevelopmental outcomes in anti-VEGF treated premature infants before 2 years of age, and only one study reported 5 year outcomes. Our recent study also found that the neurodevelopmental outcomes at the mean age of 1.52 ± 0.59 years after birth were similar between ROP patients who did not require treatment and ROP patients with IVB treatment. Unfortunately, the value of early assessments of cognition in predicting cognitive functioning at school age and older is questionable.Many developmental deficits in cognition, emotional and behavioral development, and social adaptive functioning may emerge at older ages in the absence of neurodevelopmental impairment in toddlerhood. Visuomotor function deficit are also noted at school age in children who had normal development at 3 years of age. The above studies demonstrate a need for longer follow-up of the preterm infants to fully comprehend their neurodevelopmental outcomes. To our knowledge, currently there are no reports of neurodevelopmental outcomes in anti-VEGF treated premature infants beyond 5 years of age. Therefore, investigators propose this study hopefully to have a better understanding of the long-term safety of anti-VEGF on the treatment of ROP. This study will aim at (1) Understanding the long-term neurodevelopmental outcomes of intravitreal injection of anti-VEGF comparing to standard laser treatment for ROP in premature infants. (2) Compare the long-term neurodevelopmental outcomes in premature infants with ROP treated by different anti-VEGF agents. (3) Analysis the long-term ocular morphological and functional outcomes in premature infants with ROP with prior treatments. Investigators plan to recruit patients from our previous ROP cohort, who now aged 3 to12-years-old. Thepatients will be divided to six groups:premature without ROP (Group 0); ROP without treatment (Group 1); ROP with laser photocoagulation treatment (Group 2); ROP with anti-VEGF treatment (Group 3); ROP with laser photocoagulation + anti-VEGF treatment (Group 4); Fullterm (Group 5).Serialneurodevelopmental tests, such as Chinese Child Development Inventory (CCDI), Child Behavior Checklist (CBCL), The Berry-Buktenica Developmental Test of Visual-Motor Integration, Bayley Scales of Infant Development, Wechsler children's intelligence test- fourth editionand other neurocognitive tests and questionnaires, will be performed yearly in all patients. The detailed visual tests, such as best-corrected visual acuity, slit lamp examination, indirect ophthalmoscopy,and optical coherence tomography (OCT) will be performed every 6 months. Main outcome measures will be neurodevelopmental outcomes. The neurodevelopmental outcomes will be analyzed longitudinally and in the cross-section fashion. These outcomes will be compared between the five groups, and in the subgroup analysis. Secondary outcomes will include ocular morphological and functional results of these children. Finally, the correlation of ocular resultswith neurodevelopment outcomes will be analyzed. Investigators are fortunate to have the opportunity of following a longitudinal ROP cohort and monitor their long-term outcomes. In the long-term, this studywill improve understanding the long-term safety of anti-VEGF treatment for ROP, which is a heatedly debated topic. Investigators will also have a better knowledge which anti-VEGF might be safer than the other. Understanding these facts will help us to come up with a better treatment strategy for ROP in the future.

NCT ID: NCT04347590 Recruiting - Infant Development Clinical Trials

Continuous Glucose Monitoring and Cerebral Oxygenation in Preterm Infants

Glucolight
Start date: April 24, 2020
Phase: N/A
Study type: Interventional

Neonatal hypoglicaemia is associated with impaired neurodevelopment outcomes in preterm infants. Thus, hypoglicemic events should be diagnosed and treated promptly. Unfortunately, hypo- and hyperglicaemia management is still controversial. The investigators aim to assess if a continuous glucose monitor (CGM) impacts on both short-term and long-term neurodevelopment. Primary outcome is the effect of CGM coupled with a control algorithm for glucose infusion on the number of hemodynamic significant events (defined as hypoglycemic events associated with DOT-detectable reduction of brain oxygenation). It will be enrolled newborns ≤32 weeks gestational age and/or of birthweight ≤1500 g, they will be randomized in two study arms, both of them will wear Medtronic CGM during the first 5 days of life: 1) Blinded group (B): the device monitor will be switched off, glucose infusion rate will be modified according to the daily capillary glucose tests. 2) Unblinded group (UB): the device monitor will be visibile, alarms for hypos/hyper will be active and glucose infusion rate will be modulated according to CGM and PID control algorithm. Enrolled newborns will also be monitored with near-infrared diffuse optical tomography (DOT) during the first 5 days from enrollment. Follow-up will be performed at 12, 18, 24 months and 5 years by neurodevleopmental scale (Bailey III until 24 months; Wechsler Preschool and Primary Scale of Intelligence (WPPSI) at 5 years). The estimated numerosity is 60 patients (30 for each arm).

NCT ID: NCT03476980 Recruiting - Clinical trials for Neurodevelopmental Abnormality

Two Year Developmental Follow-up for PREMOD2 Trial (Premature Infants Receiving Milking or Delayed Cord Clamping)

PREMOD2FU
Start date: July 6, 2019
Phase: N/A
Study type: Interventional

An extension of the PREMOD2 trial, the PREMOD2 Follow-Up trial will evaluate the neurodevelopmental outcomes at 22-26 months corrected age of preterm children who received UCM or DCC. This prospective multi-national randomized controlled trial (RCT) is a two-arm parallel non-inferiority design of two alternative approaches of treatment.