Clinical Trials Logo

Clinical Trial Summary

Subjects with relapsed or refractory neuroblastoma and osteosarcoma will receive ex-vivo expanded and activated natural killer (NK) cells from a haploidentical donor in conjunction with the immunocytokine, hu14.18-IL2.


Clinical Trial Description

Natural Killer cells, a type of white blood cell, circulate around the body and kill abnormal cells (cells that are malignant, damaged or infected with virus). Sometimes cancer cells adapt to the body's own NK cells and are able to avoid being killed by them. This clinical trial uses two strategies to overcome the cancer cells' ability to avoid NK cell-mediated death. The first strategy involves giving NK cells from another individual to the patient (in other words, donor- or haploidentical-NK cells). This is done because NK cells from an individual who is haploidentical (half-matched genetic make-up) are still able to effectively kill the cancer cells. Unfortunately, only a limited number of NK cells can be obtained from a donor. So, to increase the number of cancer-killing NK cells that will be given to the patient, the donor NK cells will first be grown in a sterile laboratory environment and allowed to multiply many-fold before they are infused into the patient. This growing process also activates the donor NK cells, which increases their ability to kill cancer cells. The second strategy to overcome the cancer cells' ability to avoid NK cell-mediated death is to administer the immunocytokine, hu14.18-IL2, every day for seven days after infusion of the donor NK cells. The antibody portion (hu14.18) of the immunocytokine molecule "flags" the neuroblastoma cells for destruction by NK cells and the cytokine portion (IL2) further activates the NK cells (as well as other anti-tumor immune effector cells). Since the donor NK cells are from a haploidentical individual, they are different enough to be recognized as foreign cells and will be killed immediately ("rejected") by the patients own immune system unless the immune system is restrained. So, to allow the donor NK cells time to kill neuroblastoma cells before they are "rejected", a chemotherapy regimen is first given to the patient to temporarily restrain the patient's own immune system. This also allows "room" for the donor NK cells to live, multiply and function. Four courses of treatment are planned for each subject. Each course of treatment will be approximately one month long and involves a week of chemotherapy followed by infusion of donor NK cells. Beginning the day after the donor NK cell infusion, hu14.18-IL2 is infused over four hours for seven consecutive days. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03209869
Study type Interventional
Source University of Wisconsin, Madison
Contact
Status Withdrawn
Phase Phase 1
Start date March 12, 2018
Completion date September 7, 2022

See also
  Status Clinical Trial Phase
Completed NCT00492167 - Beta-Glucan and Monoclonal Antibody 3F8 in Treating Patients With Metastatic Neuroblastoma Phase 1
Completed NCT04474678 - Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!") N/A
Terminated NCT00801931 - Double Cord Blood Transplant for Patients With Malignant and Non-malignant Disorders Phase 1/Phase 2
Active, not recruiting NCT03107988 - NANT 2015-02: A Phase 1 Study of Lorlatinib (PF-06463922) Phase 1
Recruiting NCT04253015 - A Post-Authorisation Safety Study Patient Registry of Patients With Neuroblastoma Being Treated With Dinutuximab Beta
Terminated NCT00788125 - Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors Phase 1/Phase 2
Completed NCT03273712 - Dosimetry-Guided, Peptide Receptor Radiotherapy (PRRT) With 90Y-DOTA- tyr3-Octreotide (90Y-DOTATOC) Phase 2
Recruiting NCT02933333 - G-CSF Alone or Combination With GM-CSF on Prevention and Treatment of Infection in Children With Malignant Tumor Phase 4
Recruiting NCT00588068 - Molecular Characterization of Neuroblastic Tumor: Correlation With Clinical Outcome
Recruiting NCT04301843 - Eflornithine (DFMO) and Etoposide for Relapsed/Refractory Neuroblastoma Phase 2
Completed NCT00026780 - Eligibility Screening for a NCI Pediatric Oncology Branch Research Study
Recruiting NCT04040088 - An Investigational Scan (68Ga-DOTATATE PET/CT) in Diagnosing Pediatric Metastatic Neuroendocrine Tumors Early Phase 1
Recruiting NCT06057948 - A Study of a Vaccine in Combination With Beta-glucan in People With Neuroblastoma Phase 2
Not yet recruiting NCT06335745 - PediCARE Health Equity Intervention in High-Risk Neuroblastoma N/A
Recruiting NCT02559778 - Pediatric Precision Laboratory Advanced Neuroblastoma Therapy Phase 2
Completed NCT02441062 - Impact of Ga-68 DOTATOC PET-CT Imaging in Management of Neuroendocrine Tumors Phase 2
Active, not recruiting NCT02245997 - Local Control With Reduced-dose Radiotherapy for High-Risk Neuroblastoma N/A
Not yet recruiting NCT01156350 - Haplo-identical Hematopoietic Stem Cell Transplantation Following Reduced-intensity Conditioning in Children With Neuroblastoma Phase 2
Active, not recruiting NCT01192555 - Allogeneic Tumor Cell Vaccination With Oral Metronomic Cytoxan in Patients With High-Risk Neuroblastoma Phase 1/Phase 2
Completed NCT01222780 - To Evaluate the Safety, Activity and Pharmacokinetics of Marqibo in Children and Adolescents With Refractory Cancer Phase 1