Clinical Trials Logo

Muscle Protein Synthesis clinical trials

View clinical trials related to Muscle Protein Synthesis.

Filter by:

NCT ID: NCT03994198 Completed - Clinical trials for Muscle Protein Synthesis

Effect of Protein Quality During Overreaching in Trained Cyclists

Start date: November 1, 2017
Phase: N/A
Study type: Interventional

Athletes frequently undertake periods of intensified training commonly referred to as "overreaching." These training periods acutely decrease performance, with the expectation that performance will rebound and improve after a short recovery. Yet, overreaching does not always improve performance and may be a precursor to overtraining syndrome, a long-term decrement in performance. A nutritional intervention focused on the adoption of 'best practices' for protein feeding (optimal timing, dose, and quality) could help reduce the stress of overreaching, reduce the likelihood of developing overtraining syndrome, and augment adaptations to intensified exercise. While the nutrition study is our main interest, the investigators first want to validate the measurement of exercise performance. Accordingly, this project consists of two related studies: (1) the assessment of short time trials for reliability and validity; and (2) the assessment of optimal protein feeding to decrease the stress of overreaching and improve outcomes following training.

NCT ID: NCT03372928 Completed - Clinical trials for Muscle Protein Synthesis

Essential Amino Acids and Protein Kinetics During Caloric Deprivation

Start date: September 1, 2018
Phase: N/A
Study type: Interventional

The amount of essential amino acids (EAA) necessary to maximally stimulate muscle protein synthesis and optimize whole-body net protein balance during caloric deprivation has not been determined. This study will address that gap in knowledge by examining the resting and post-exercise muscle and whole-body protein kinetic responses to ingesting varying amounts of EAA after a 5 day period of negative energy balance. This study will provide the initial evidence to support the development of a recovery-based food product for military combat rations.

NCT ID: NCT03319550 Completed - Nutrition Clinical Trials

Whey vs Casein to Combat Post-inflammatory Protein and Muscle Waste in Acute Disease

Start date: December 7, 2017
Phase: N/A
Study type: Interventional

This study compares three different protein supplements (casein, whey and leucine-enriched whey) and their effect on post-inflammatory muscle waste in a model of acute disease. Each test person will undergo all three interventions. It is believed that leucine is the primary driver of muscle protein synthesis and therefore we hypothesize that leucine-enriched whey and whey are superior to casein in combating post-inflammatory muscle waste, because of its higher leucine content (16%, 11% and 9% leucine, respectively).

NCT ID: NCT03303729 Completed - Clinical trials for Muscle Protein Synthesis

Influence of Carbohydrate on Amino Acid Absorption From Dietary Protein (ICADP)

ICADP
Start date: November 24, 2017
Phase: N/A
Study type: Interventional

10 young males will be recruited to participate in a randomized double blinded crossover study to investigate the influence of concomitant intake of two different types of carbohydrate with protein hydrolysate on the absorption kinetics of protein-derived amino acids and the impact on myofibrillar protein synthesis. During the trial days the subjects will perform a bout of whole body resistance exercise and ingest a supplement of meat hydrolysate labeled with D5-phenylalanine together with randomized and double blinded type of carbohydrate consisting of either glucose or cluster dextrin. The primary outcome is the time to obtain peak concentration of D5-phenylalanine after intake of meat hydrolysate with either glucose or cluster dextrin. Hypotheses: I) The cluster dextrin will increase the absorption of the amino acids from the meat hydrolysate, and thereby result in a faster rise and a higher peak in plasma amino acid concentration in the postprandial period. II) The meat hydrolysate will increase the protein synthesis rate to a higher extent when combined with cluster dextrin than with glucose.

NCT ID: NCT02282566 Completed - Clinical trials for Muscle Protein Synthesis

Effect of Protein-nutrition Beverages on Muscle Protein Synthesis in Women

Start date: January 6, 2015
Phase: N/A
Study type: Interventional

This study investigates whether a protein-nutrition beverage can increase muscle protein synthesis to a similar magnitude as a control beverage.

NCT ID: NCT01885429 Completed - Clinical trials for Muscle Protein Synthesis

Effect of Supplementing a Mixed Macronutrient Beverage With Graded Doses of Leucine on Myofibrillar Protein Synthesis

Start date: January 2011
Phase: N/A
Study type: Interventional

Muscle mass is normally maintained through the regulated balance between the processes of protein synthesis (i.e. making new muscle proteins) and protein breakdown (breaking down old muscle proteins). Proteins are composed of amino acids and we know that amino acids increase muscle protein synthesis. However, not all amino acids are the same. Essential amino acids are ones that must be consumed through food, while non-essential amino acids can be made by our body. Interestingly, the essential amino acids are all that are required to increase the rate of muscle protein synthesis. In addition, the essential amino acid leucine appears to be particularly important in regulating protein synthesis. However, how leucine is able to increase protein synthesis is not entirely understood. Previously, it has been shown that 20-25 g of high-quality protein, such as that found in milk (whey), appears to be the amount of protein that maximizes the rate of muscle protein synthesis after performing a bout of resistance exercise. Thus, we aim to measure the synthesis of new muscle proteins after ingesting different amounts of protein and amino acids. We will measure muscle protein synthesis after consumption of the beverage a participant is randomized to in a leg that has done no exercise ( ie. a rested leg) and in the other leg that has done resistance exercise. Amino acids are 'strung-together' to make protein. The 'essential' amino acids must be consumed through food because our body cannot make them, thus they are consumed when you eat protein rich foods like milk or chicken. Leucine, isoleucine, and valine are simply 3 of the 8 essential amino acids that make up dietary protein. Unlike essential amino acids, 'non-essential' amino acids may be synthesized by the body, however they are also present in protein rich foods like chicken or milk. We aim to determine if it is the leucine content found in 25 g of whey protein that is primarily responsible for maximizing muscle protein synthesis at rest and following resistance exercise. We also wish to determine how muscle genes and metabolism respond to this protocol.

NCT ID: NCT01473576 Completed - Clinical trials for Muscle Protein Synthesis

Impact of Nitrate Ingestion on Protein Synthesis

PRO-Nitrate
Start date: August 2011
Phase: N/A
Study type: Interventional

A diet rich in leafy green vegetables has been shown to reduce the risk of developing chronic metabolic disease. The health benefits from these particular vegetables may be attributed to their high nitrate content. Recent work suggests that dietary nitrate triggers endogenous nitric oxide release, thereby stimulating vasodilation and improving muscle perfusion in an insulin-independent manner. We hypothesize that in an insulin-resistant state, nitrate co-ingestion will increase muscle perfusion, thereby improving post-prandial delivery of nutrients to skeletal muscle tissue. Specifically, a more efficient delivery of food derived amino acids will stimulate post-prandial muscle protein synthesis and, as such, compensate for a blunted muscle protein synthetic response to food intake in the elderly. This proposal will investigate the efficacy of nitrate co-ingestion as a means to augment muscle protein synthesis in elderly, type 2 diabetes patients and may lead to a novel therapy in the clinical care of type 2 diabetes patients.