Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05167721
Other study ID # 21-005569
Secondary ID FD-R-07290-01
Status Recruiting
Phase Phase 2
First received
Last updated
Start date December 15, 2021
Est. completion date December 2025

Study information

Verified date March 2024
Source Mayo Clinic
Contact Tonette Gehrking
Phone (507) 284-0336
Email adc.research@mayo.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Multiple system atrophy (MSA) is a rare, rapidly progressive, and invariably fatal neurological condition characterized by autonomic failure, parkinsonism, and/or ataxia. There is no available treatment to slow or halt disease progression. The purpose of this study is to assess optimal dosing frequency, effectiveness and safety of adipose-derived autologous mesenchymal stem cells delivered into the spinal fluid of patients with MSA. Funding source: FDA Office of Orphan Product Development (OOPD), Mayo Clinic Executive Dean for Research Transformational Award, Mayo Clinic Regenerative Medicine, and Mayo Clinic Department of Neurology.


Description:

Multiple system atrophy (MSA) is a rare, rapidly progressive, and invariably fatal neurodegenerative disease for which there is no disease-modifying treatment. Recent insights into pathophysiologic mechanisms suggest a crucial role of deprivation of neurotrophic factors which have been shown to be secreted by mesenchymal stem cells (MSCs). In a recent phase I/II study adipose-derived autologous MSCs were delivered intrathecally to patients with early MSA utilizing a dose-escalation design. At a dose of 50 million MSCs, injections were generally well tolerated, but thickening of cauda equina nerve roots was observed which was either asymptomatic or associated with low back pain. The rate of disease progression assessed using the Unified MSA Rating Scale (UMSARS) was markedly slower compared to a matched control group. An even more favorable side effect profile and virtually lack of disease progression was seen in an add-on cohort receiving 25 million MSCs per injection. Neurofilament light chain, an index of central axonal degeneration, decreased in all patients receiving that dose. MSC administrations resulted in a marked, dose-dependent increase of neurotrophic factors in CSF. 2-year survival was significantly higher than observed in natural history cohorts. Based on these findings we are now conducting a double-blind, placebo-controlled, adaptive design phase II trial of adipose-derived intrathecal autologous MSCs in MSA with the goal to establish optimal treatment frequency and simultaneously derive placebo-controlled efficacy and safety data in preparation for a multicenter phase III trial. Up to 76 adult subjects with MSA will be enrolled. To ensure a homogenous patient population with comparable rates of disease progression, we will restrict the study to early cases but still fulfilling strictest diagnostic consensus criteria. Participants will undergo a subcutaneous fat biopsy to derive autologous MSCs, which are cultured, expanded, and prepared for delivery in Mayo's Cell Therapeutics Lab. In a first phase, subjects will be randomized 1:1:1 to receive 25 million MSCs at two different injection intervals (every 6 months or every 3 months) as the two active arms or lactated Ringer's solution as the placebo arm. A recruitment hold after half the subjects have been enrolled will allow for an interim futility and efficacy analysis to select the "winner" active treatment assuming futility criteria are not met. The study will then restart recruiting the second half of subjects utilizing 2:1 randomization ("winner" active: placebo). Patients undergo clinical assessments at baseline, 3, 6, 9, and 12 months to derive the primary endpoint, the rate of disease progression assessed using UMSARS total and a mixed effects regression model. MRI of the head and lumbar spine will be completed at baseline and 12 months to expand safety data and to assess the rate of atrophy of selected brain regions using morphometric measures as surrogate markers of disease progression. Spinal fluid before and after administrations, as well as stem cell product media will be collected to further explore biological properties and effects of MSCs and to explore selected spinal fluid markers as biomarkers of disease progression.


Recruitment information / eligibility

Status Recruiting
Enrollment 76
Est. completion date December 2025
Est. primary completion date December 2025
Accepts healthy volunteers No
Gender All
Age group 30 Years to 70 Years
Eligibility Inclusion Criteria: 1. Males or females aged 30-70 years, who are willing and able to give informed consent. 2. Clinical diagnosis of MSA, fulfilling consensus criteria for probable MSA. 3. UMSARS I (omitting question 11) between 5 and 17, and able to walk unaided (i.e. able to walk at least 50 yards without the use of a cane or walker, and without other support such as holding on to an arm or touching walls). 4. Anticipated survival of at least 3 years in the opinion of the investigator. 5. Normal cognition as assessed by the Montreal Cognitive Assessment (MOCA). We will require a value =26. Exclusion Criteria: 1. Pregnant or breastfeeding women, and women of childbearing potential who do not agree to practice an acceptable method of birth control. Acceptable methods of birth control in this study are: surgical sterilization, intrauterine devices, partner's vasectomy, a double-protection method (condom or diaphragm with spermicide), hormonal contraceptive drug (i.e., oral contraceptive, contraceptive patch, long-acting injectable contraceptive) with a required second mode of contraception. 2. Participants with a clinically significant or unstable medical or surgical condition that, in the opinion of the investigator, might preclude safe completion of the study or might affect study results. These include conditions causing significant CNS or autonomic dysfunction, clinically significant peripheral neuropathy, active malignant neoplasm, amyloidosis, active autoimmune disease, immunocompromised state, active infection, congestive heart failure (NYHA III or IV), recent (<6 months) myocardial infarction, history of stoke with residual deficits, uncontrolled diabetes mellitus, alcoholism, orthopedic problems that compromise mobility and activity of daily living, significant liver or kidney disease, thrombocytopenia (<50 x 109/L), disorders affecting coagulation, and patients on active anticoagulation. 3. Participants who have taken any investigational products within 90 days prior to baseline, or with expected effects lasting beyond 60 days prior to baseline. 4. Medications that could affect clinical evaluations are permitted but need to be withdrawn at least four half-lives prior to study visits. Those include medications used to treat motor symptoms, such as levodopa and other anti-Parkinsonian medications. 5. Patients with contraindication to any of the study procedures, in particular MRI scanning.

Study Design


Related Conditions & MeSH terms


Intervention

Biological:
Autologous Mesenchymal Stem Cells
Autologous Mesenchymal Stem Cells administered intrathecally
Other:
Placebo
Placebo administered intrathecally

Locations

Country Name City State
United States Mayo Clinic Rochester Minnesota

Sponsors (1)

Lead Sponsor Collaborator
Mayo Clinic

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in UMSARS total (= UMSARS I + UMSARS II) score Rate of disease progression assessed using the change in the UMSARS total (= UMSARS I + UMSARS II) score 12 months
Secondary Change in UMSARS I score Rate of disease progression assessed using the change in the UMSARS I score 12 months
Secondary Change in UMSARS II score Rate of disease progression assessed using the change in the UMSARS II score 12 months
Secondary Change in modified UMSARS score Rate of disease progression assessed using a modified UMSARS scale comprising selected items of UMSARS that reflect clinically most meaningful aspects of the disease 12 months
Secondary Change in COMPASS select score Progression in autonomic symptoms assessed using COMPASS select 12 months
Secondary Rate of atrophy of selected brain regions Rate of atrophy and diffusivity change of selected brain regions assessed using MRI morphometry 12 months
See also
  Status Clinical Trial Phase
Completed NCT03593512 - Deep Brain Stimulation for Autonomic and Gait Symptoms in Multiple System Atrophy N/A
Recruiting NCT03648905 - Clinical Laboratory Evaluation of Chronic Autonomic Failure
Active, not recruiting NCT05699460 - Pre-Gene Therapy Study in Parkinson's Disease and Multiple System Atrophy
Recruiting NCT02897063 - Effects of Midodrine and Droxidopa on Splanchnic Capacitance in Autonomic Failure Phase 1
Not yet recruiting NCT00758849 - Fipamezole in Neurogenic Orthostatic Hypotension Phase 2
Completed NCT01155492 - Increased Gut Permeability to Lipopolysaccharides (LPS) in Parkinson's Disease N/A
Recruiting NCT04431713 - Exenatide Once-weekly as a Treatment for Multiple System Atrophy Phase 2
Completed NCT04184063 - Study of NBMI Treatment in Patients With Atypical Parkinsons (PSP or MSA) Phase 2
Recruiting NCT05121012 - Synaptic Loss in Multiple System Atrophy
Terminated NCT03589976 - A Futility Trial of Sirolimus in Multiple System Atrophy Phase 2
Recruiting NCT04706234 - Systematic Assessment of Laryngopharyngeal Function in Patients With MSA, PD, and 4repeat Tauopathies
Completed NCT00368199 - Transcranial Duplex Scanning and Single Photon Emission Computer Tomography (SPECT) in Parkinsonian Syndromes N/A
Recruiting NCT04472130 - Neurodegenerative Diseases Registry
Recruiting NCT04876326 - Potential Use of Autologous and Allogeneic Mesenchymal Stem Cells in Patients With Multiple System Atrophy N/A
Recruiting NCT04680065 - GDNF Gene Therapy for Multiple System Atrophy Phase 1
Completed NCT03753763 - Safinamide for Multiple System Atrophy (MSA) Phase 2
Recruiting NCT04250493 - Insulin Resistance in Multiple System Atrophy N/A
Recruiting NCT06072105 - Medical Decision Making in Multiple System Atrophy N/A
Terminated NCT02149901 - Water and Sudafed in Autonomic Failure Early Phase 1
Terminated NCT00997672 - Lithium in Multiple System Atrophy Phase 2