Multiple Sclerosis Clinical Trial
Official title:
Developing Novel Non-invasive Electrophysiological Biomarkers of Dysfunction in Spinal and Cortical Pathways and Sensorimotor Impairments in Motor Neurone Disease
Substantial variability exists in the onset, and rate of degeneration across individuals with Motor Neurone Disease (MND) or Amyotrophic Lateral Sclerosis (ALS). This variability requires biomarkers that accurately classify and reliably track clinical subtypes as the disease progresses. Degeneration occurs in the brain and spinal cord, however, non-invasive diagnosis of spinal cord function remains highly challenging due to its unique alignment in spine. Disruption of complex spinal and cortical circuits that transmit and process neural signals for position sense and movement has not been adequately captured in the neurophysiological profiling of ALS patients. The overarching aim of this study is to reveal and quantify the extent of change in the sensorimotor integration and its potential contribution to network disruption in ALS.
Background: Substantial variability exists in the onset, and rate of degeneration across individuals with Motor Neurone Disease (MND) or Amyotrophic Lateral Sclerosis (ALS). This variability requires biomarkers that accurately classify and reliably track clinical subtypes as the disease progresses. Degeneration occurs in the brain and spinal cord, however, non-invasive diagnosis of spinal cord function remains highly challenging due its unique alignment in the spine. Disruption of complex spinal and cortical circuits that transmit and process neural signals for position sense and movement has not been adequately captured in the neurophysiological profiling of ALS patients. Aim: To develop, test, and employ non-invasive techniques to explore (dys)function between motor, sensory brain, and spinal networks in ALS. The project will address if the electrical activity of the cortical-spinal network by the of use peripheral stimulation (vibration, electrical nerve stimulation) to probe and reveal the normal or abnormal communication between brain and spinal networks. It is expected to reveal novel neurophysiological signatures in ALS patients compared to healthy controls. Study Design & Data Analysis: Surface electrodes will be mounted over the targeted regions in conjunction with High-Density EEG and High-density Electromyography (EMG). A physical and mathematical model of the underlying sources of electric activity (source localization) will be carried out at rest, during task, and with non-invasive peripheral nerve stimulation (PNS) and TMS. A separate paradigm will augment sensorimotor communication between the primary motor cortex (M1) and the somatosensory cortex (S1). Mild vibration (5N/< 500 grams) will be applied to the wrist and/or bicep tendon transcutaneously. Vibration in conjunction with non-invasive peripheral nerve stimulation will induce transient changes (30 seconds maximum) in the intrinsic excitability of motor neurons in the spinal cord. Surface EMG will capture altered MN activity at the spinal level and the anticipated augmented communication in cortical networks (S1-M1) will be captured with EEG through connectivity analysis. Non-invasive transcranial magnetic stimulation in conjunction with vibration/nerve stimulation will be recorded to explore upper motor neurone influences on the altered intrinsic excitability of spinal motor neurons. Data collection: EXG-EEG-EMG and TMS/Peripheral Stimulation recordings will be conducted using a BioSemi® ActiveTwo system with 128 active sintered Ag-AgCl electrodes and headcaps (BioSemi B.V., Amsterdam, The Netherlands). The TMS system is a Brainbox DuoMAG (Brainbox Ltd., Cardif, Wales, UK) which can be used with a Digitimer peripheral stimulator. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05528666 -
Risk Perception in Multiple Sclerosis
|
||
Completed |
NCT03608527 -
Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis
|
N/A | |
Recruiting |
NCT05532943 -
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis
|
Phase 1/Phase 2 | |
Completed |
NCT02486640 -
Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
|
||
Completed |
NCT01324232 -
Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT04546698 -
5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
|
||
Active, not recruiting |
NCT04380220 -
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
|
||
Completed |
NCT02835677 -
Integrating Caregiver Support Into MS Care
|
N/A | |
Completed |
NCT03686826 -
Feasibility and Reliability of Multimodal Evoked Potentials
|
||
Recruiting |
NCT05964829 -
Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis
|
N/A | |
Withdrawn |
NCT06021561 -
Orofacial Pain in Multiple Sclerosis
|
||
Completed |
NCT03653585 -
Cortical Lesions in Patients With Multiple Sclerosis
|
||
Recruiting |
NCT04798651 -
Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis
|
N/A | |
Active, not recruiting |
NCT05054140 -
Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT05447143 -
Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis
|
N/A | |
Recruiting |
NCT06195644 -
Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients
|
Phase 1 | |
Completed |
NCT04147052 -
iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis
|
N/A | |
Completed |
NCT03594357 -
Cognitive Functions in Patients With Multiple Sclerosis
|
||
Completed |
NCT03591809 -
Combined Exercise Training in Patients With Multiple Sclerosis
|
N/A | |
Completed |
NCT02845635 -
MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis
|