Multiple Sclerosis Clinical Trial
Official title:
Study of Brain Activations and Physiological Responses Using NeuroBiofeedback in Patients With Multiple Sclerosis.Study of Brain Activations and Physiological Responses Using NeuroBiofeedback in Patients With Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, gliosis, and neuronal loss. Neurological symptoms may include visual disturbances, numbness and tingling, focal weakness, bladder and bowel incontinence, and cognitive impairment. Some previous studies have indicated that the NeuroBiofeedback (NBF) technique could be a promising new treatment for the rehabilitation of many neurological disorders and neurodegenerative diseases, including MS. Several studies have investigated the beneficial effects of this technique on the motor and cognitive outcomes of MS, mainly aiming to evaluate motor performance, fatigue and chronic pain. Few studies have focused on the evaluation and treatment of cognitive processes with NBF, except for one study on information processing speed. Specifically, regarding the application of NBF techniques in MS, recent literature has demonstrated that modulation of the alpha-theta rhythm has led to an improvement in attentional processes with consequent reduction in anxiety. Therefore, the objective of this study is to verify the effectiveness of NBF training on the modulation of cortical activity and physiological responses through the exposure of subjects with MS to cognitive tasks and training for mood regulation.
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, gliosis, and neuronal loss. Neurological symptoms may include visual disturbances, numbness and tingling, focal weakness, bladder and bowel incontinence, and cognitive impairment. Some previous studies have indicated that the NeuroBiofeedback (NBF) technique could be a promising new treatment for the rehabilitation of many neurological disorders and neurodegenerative diseases, including MS. Several studies have investigated the beneficial effects of this technique on the motor and cognitive outcomes of MS, mainly aiming to evaluate motor performance, fatigue and chronic pain. Few studies have focused on the evaluation and treatment of cognitive processes with NBF, except for one study on information processing speed. Specifically, regarding the application of NBF techniques in MS, recent literature has demonstrated that modulation of the alpha-theta rhythm has led to an improvement in attentional processes with consequent reduction in anxiety. Therefore, the objective of this study is to verify the effectiveness of NBF training on the modulation of cortical activity and physiological responses through the exposure of subjects with MS to cognitive tasks and training for mood regulation. Patients will not undergo an experimental procedure as foreseen by the study; the clinical and neuropsychological variables that will be collected for the study are those that are commonly collected by the neuropsychologist, in particular the main neuro-cognitive functions (memory, language, attention and executive functioning) and emotional abilities (meta cognition) will be considered. After enrollment, the clinical background and baseline characteristics of patients will be assessed. Enrolled patients will be randomly assigned to IG and SG. After randomization, patients will undergo instrumental examinations and neuropsychological evaluation, as required by the protocol. Patients in both groups will undergo 2 neurofeedback training sessions. All recruited subjects will be evaluated at two time-points: a first evaluation at baseline (T0) and at the end of the training (T1). Patients will undergo stimulation training via NBF 2 times a week for two months, for a total of 16 sessions. The procedure and execution of the training requires that the subjects are connected to a series of electrodes that will record the cortical electrical activity. During each session, IG patients will view their recorded brain waves and physiological responses in front of a computer screen, while a professional will explain to them what they need to do to intervene on what they see, in order to correctively modify their brain waves. While SG patients will be provided with irrelevant information (recorded data from other patients) and therefore will not be able to modulate their cortical activation ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05528666 -
Risk Perception in Multiple Sclerosis
|
||
Completed |
NCT03608527 -
Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis
|
N/A | |
Recruiting |
NCT05532943 -
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis
|
Phase 1/Phase 2 | |
Completed |
NCT02486640 -
Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
|
||
Completed |
NCT01324232 -
Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT04546698 -
5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
|
||
Active, not recruiting |
NCT04380220 -
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
|
||
Completed |
NCT02835677 -
Integrating Caregiver Support Into MS Care
|
N/A | |
Completed |
NCT03686826 -
Feasibility and Reliability of Multimodal Evoked Potentials
|
||
Recruiting |
NCT05964829 -
Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis
|
N/A | |
Withdrawn |
NCT06021561 -
Orofacial Pain in Multiple Sclerosis
|
||
Completed |
NCT03653585 -
Cortical Lesions in Patients With Multiple Sclerosis
|
||
Recruiting |
NCT04798651 -
Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis
|
N/A | |
Active, not recruiting |
NCT05054140 -
Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT05447143 -
Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis
|
N/A | |
Recruiting |
NCT06195644 -
Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients
|
Phase 1 | |
Completed |
NCT04147052 -
iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis
|
N/A | |
Completed |
NCT03594357 -
Cognitive Functions in Patients With Multiple Sclerosis
|
||
Completed |
NCT03591809 -
Combined Exercise Training in Patients With Multiple Sclerosis
|
N/A | |
Completed |
NCT03269175 -
BENEFIT 15 Long-term Follow-up Study of the BENEFIT and BENEFIT Follow-up Studies
|
Phase 4 |