Clinical Trials Logo

Clinical Trial Summary

To measure the effectiveness of a Remote Patient Monitoring solution based on the use of a smart insole wearable device (and associated smart phone app), for monitoring MS patients' condition on a day-to-day basis. The main focus is the objective measurement of gait, given that 75% of people with MS display clinically significant gait impairments. Initial gait lab "gold standard" data indicate that the Artificial Intelligence (AI)-based digital biomarker will prove to be highly effective at detecting changes in the MS patient's condition.


Clinical Trial Description

Multiple sclerosis (MS) is lifelong autoimmune disease that is typically first diagnosed in young adults; MS affects the central nervous system and can result in various impairments, including walking, cognition, dexterity, sleep, vision and bladder control. Notably, impairments to gait are the most common and are identified as the most impactful to a person with MS's (PwMS's) quality of life. Furthermore, ambulation is a key metric used to assess the severity of MS and is the basis for the Expanded Disability Status Scale (EDSS) that represents the global standard for assessing a patient's MS condition. For these reasons, clinicians employ a variety of gait tests to assess the severity and progression of the disease, which require frequent clinical visits and lack objective measurements as compared to what can be measured in a laboratory setting. Current scales do not detect subtle progression that could be indicative of early transformation into Secondary Progressive MS (SPMS) from Relapsing Remitting MS (RRMS) or significant progression in progressive forms of MS. With advancements in wearable technologies and Artificial Intelligence (AI)-based algorithm development, clinicians can be provided with meaningful laboratory grade gait metrics collected in the patient's home environment to assist their practice. Objective walking information can be provided to clinicians to track the personalized progression of the disease to enable a more targeted treatment plan. A subset of this data is also shared with the patients via their smart phone app to keep them informed and motivated. Several times per week, smart insoles in the patient's shoes will collect data from the embedded sensors (pressure sensors, accelerometer, gyroscope). The wearable smart insoles are fitted into a pair of the patient's "everyday use" shoes, and are very similar to the type of "comfort" insoles available from a local pharmacy. The smart insole data will be used to create AI-based personalized models that compute each individual's walking signature; this includes tracking of subtle changes over time (improvement, deterioration) as well as identifying specific gait phenotypes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05781113
Study type Observational
Source Celestra Health Systems
Contact Bruce Ford
Phone 6132940620
Email bruce.ford@celestrahealth.com
Status Recruiting
Phase
Start date July 1, 2023
Completion date March 1, 2025

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT02845635 - MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis