Clinical Trials Logo

Clinical Trial Summary

This study is to examine the efficacy of tDCS to improving walking in people with Multiple Sclerosis (PwMS). Our study compromises 1 group of subjects with MS which will attend the lab for three sessions. In the first session, subjects will be consented, complete the Patient Determined Disease Steps (PDDS), the Fatigue Severity Scale (FSS), and maximal voluntary contractions (MVCs) of the right and left knee extensors and flexors to determine the more-affected leg. The second and third sessions will involve whole-body FDG PET imaging. During each of these sessions, the subject will walk for 20 min on a treadmill at a self-selected speed during which time tDCS or SHAM, in a blinded manner, will be applied to the motor cortex (M1) corresponding to the more-affected leg. Approximately 2 minutes into the walking, [18F]fluorodeoxyglucose (FDG) will be administered by IV injection. Immediately after the walking is completed, the subject will be positioned in the PET/CT scanner and a whole body (top of head to toes) PET/CT scan will be acquired for the evaluation of glucose metabolism in the brain, spine, and lower extremities. The third session will be identical to the second session with the exception that the opposite condition (tDCS or SHAM) will be used.


Clinical Trial Description

Prospective participants, men and women with MS, will be recruited. The plan is to enroll up to 30 to get 20 evaluable subjects. To accomplish this study, all participants will need to complete 3 sessions. The first session at the INPL and sessions 2 and 3 at PET Imaging Center (0911ZJPP) and the PET Imaging lab in Pappajohn Biomedical Discovery Building. Session 2 and 3 are separated by 5-8 days. The duration of each session will be approximately 120 minutes. We expect data collection to last 6 months. In the first session, subjects will be consented, complete the PDDS, the Fatigue Severity Scale (FSS), and maximal voluntary contractions (MVCs) of the right and left knee extensors and flexors to determine the more-affected leg. When leg strength difference is less than 10%, the more affected side will be based on self-report. The second and the third sessions will involve 20 min walking on a treadmill at a self-selected speed during which time tDCS or SHAM will be applied to the motor cortex (M1) corresponding to the more-affected leg and [18F]fluorodeoxyglucose will be administered. At the end of the walking period, the subject will be imaged on a PET/CT scanner from top of head to toes. Prior to sessions 2 and 3, all subjects will be asked to fast (water and medication can be taken during this time) for a minimum of 6 hours prior to the FDG administration. In addition, the blood glucose level will be checked (via Accuchek) prior to FDG administration and the level must be equal to or less than 200 mg/dL in order to proceed with the FDG administration on that day. At the beginning of session 2 and 3, the subject will be weighed and height measured, have a blood glucose level determined via Accuchek as described above, undergo a urine pregnancy test if the subject is of child-bearing potential, and have an IV catheter inserted for FDG administration. The subject will then be moved to the PET Scanner area in Pappajohn Biomedical Discovery Building. The subject will be asked to use the restroom prior to walking on the treadmill. A tDCS device (Soterix) will deliver a small direct current through two sponge surface electrodes (5cm × 5cm, soaked with 15 mM NaCl). The positive electrode will be placed over the motor cortex representation of the more affected leg, and a second electrode will be placed on the forehead above the contralateral orbit. The participant will receive tDCS or SHAM throughout the walking (i.e., for 20 min). In the tDCS trial, the intensity will start at 0 mA and will increase to 3 mA over the first 30 seconds. In the sham condition, the participants will receive the initial 30 seconds of stimulation, after which the current will be set to 0. Two min into the walking test on the treadmill, 10 mCi of [18F]-FDG will be injected IV. Then, the walking test continues until 20 min is reached. When the walking test is completed, the tDCS device will be removed and the subject will be positioned in the PET/CT scanner and a whole body (top of head to toes) PET/CT scan will be acquired. Ratings of perceived exertion (RPE) will be recorded with the modified Borg 10-point scale (Borg, 1982). The subjects will be instructed to estimate the effort during walking. The scale will be anchored so that 0 denotes the resting state and 10 represents the strongest effort. No long-term follow-up will be done. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04016844
Study type Interventional
Source University of Iowa
Contact
Status Completed
Phase N/A
Start date December 6, 2019
Completion date October 1, 2020

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT02845635 - MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis