Clinical Trials Logo

Clinical Trial Summary

In Multiple Sclerosis (MS) gait disorders represent one of the most disabling aspect that strongly influence patient quality of life. The improvement of walking ability is a primary goal for rehabilitation treatment. Current promising rehabilitative approaches for neurological disorders are based on the concept of the task-specific repetitive training. Hence, the interest in automated robotic devices that allow this typology of treatment for gait training. However, studies on the effectiveness of such methodologies are still poorly numerous in terms of functional improvement in MS patients. The aim of this controlled cross-over study is to evaluate the effectiveness of a Lokomat gait training in patients affected by Multiple Sclerosis in comparison to a ground conventional gait training.


Clinical Trial Description

In Multiple Sclerosis (MS), the highly variable distribution of demyelinization areas and axonal loss in the Central Nervous System can lead to very complex and unpredictable neurological deficits and clinical patterns. Gait disorders as reduced speed and stride length, gait asymmetry, increased muscular energy expenditure, balance deficit and increased risk of falling, represent one of the most disabling aspect. These motor problems strongly influence the level of independence that a person affected by MS is able to achieve, resulting in severe negative impact on quality of life. Therefore, the improvement of walking ability is a primary goal for rehabilitation treatment. Many studies demonstrated that a conventional rehabilitation treatment based on physiotherapy could be effective in increasing muscle strength and motor function, improving gait and mobility abilities, reducing fatigue and risk of falls, leading finally to an overall increase of patient autonomy. According to the most recent neurophysiological concepts based on neural plasticity, in recent years the rehabilitative approaches that seem to be more effective in improving functional performance are based on the concept of the task-specific repetitive training. As in the case of the constraint induced movement therapy (CIMT) for upper limb rehabilitation and the body weight support treadmill training (BWSTT) for the lower, the factors that appear to positively affect patient outcome are the intensity, precocity, repeatability, specificity in a training that incorporates high numbers of repetitions of task-oriented practice. Hence, the interest in automated robotic devices for gait training for MS patients has grown. With their consistent, symmetrical lower-limb trajectories, robotic devices provide many of the proprioceptive inputs that may increase cortical activation and stimulation of Central Pattern Generator (CGPs) in order to improve motor function. The use of robot-assisted-gait-training (RAGT) allows: repetition of specific and stereotyped movements in order to acquire a correct and reproducible gait pattern in conditions of balance and symmetry, early start of treatment using the activity with body weight support, safeguard of the patient with reduction of fear of falling, in order to increase the quantity and quality of the performed exercise while minimizing the intervention of a therapist. However, studies on the effectiveness of such methodologies are still poorly numerous in terms of functional improvement in patients with MS. The aim of this controlled cross-over study is to evaluate the effectiveness of a robot-driven gait orthosis (Lokomat - Hocoma, Inc., Zurich, Switzerland) gait training in patients affected by Multiple Sclerosis in comparison to a ground conventional gait training. The improvement in gait pattern, motor ability and autonomy in the functional activities of daily living will be assessed by using validated clinical and functional scales and quantitative instrumental analysis of gait kinematic parameters ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Crossover Assignment, Masking: Double Blind (Investigator, Outcomes Assessor), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02291107
Study type Interventional
Source Habilita, Ospedale di Sarnico
Contact Cristiano Sconza, MD
Phone 0354815515
Email cristiano.sconza@gmail.com
Status Recruiting
Phase N/A
Start date June 2014
Completion date June 2016

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT02845635 - MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis