Clinical Trials Logo

Clinical Trial Summary

Objective

When learning to tap to a rhythm the brain has to coordinate information from different senses (eyes, ears, touch). This information has to be integrated into a movement plan to allow a smooth, continuous performance. Two brain areas that are of particular interest for this task are the posterior parietal cortex that integrates sensory and motor information and the primary motor cortex that sends out the movement commands to the muscles. These areas communicate via nerve connections with each other. The goal of this research proposal is to examine if the strength of the connection between those areas can be changed by practicing a simple tapping task and if the change in connection strength depends on if the rhythms were shown by visual or auditory stimuli. Additionally we will investigate how the ability to tap rhythms relates to other cognitive abilities like problem solving.

Study Population

We intend to study 20 adult healthy volunteers on an outpatient basis.

Design

In three experimental sessions we propose to use transcranial magnetic stimulation (TMS) and electro encephalography (EEG) to examine the role of the posterior parietal cortex in motor learning. In session 1 a neurological examination will be performed and a clinical and anatomical MRI (Magnet Resonance Image) will be taken. Session 1 can be skipped if an MRI and a neurological exam have been performed at the NIH during the last year. In session 2 TMS will be used to examine the connection between posterior parietal cortex and primary motor cortex before and after rhythm training. Additionally, EEG will be recorded during the training session. In session 3 we will examine how the ability to tap to different beats relates to higher cognitive functions. We will record EEG during tapping simple beats and we will administer a pen and paper problem-solving test.

Outcome Measures

In session 2 the primary outcome measure will be change in conditioned Motor Evoked Potential (MEP) peak-to-peak amplitude after learning temporal motor sequences measured in the primary motor cortex. A secondary outcome measure will be the interregional coherence changes as measured by EEG during training. In session 3 the primary outcome will be performance on the tapping task and on the pen and paper test as well as the interregional coherence changes as measured by EEG during the tapping task.


Clinical Trial Description

Objective

When learning to tap to a rhythm the brain has to coordinate information from different senses (eyes, ears, touch). This information has to be integrated into a movement plan to allow a smooth, continuous performance. Two brain areas that are of particular interest for this task are the posterior parietal cortex that integrates sensory and motor information and the primary motor cortex that sends out the movement commands to the muscles. These areas communicate via nerve connections with each other. The goal of this research proposal is to examine if the strength of the connection between those areas can be changed by practicing a simple tapping task and if the change in connection strength depends on if the rhythms were shown by visual or auditory stimuli. Additionally we will investigate how the ability to tap rhythms relates to other cognitive abilities like problem solving.

Study Population

We intend to study 20 adult healthy volunteers on an outpatient basis.

Design

In three experimental sessions we propose to use transcranial magnetic stimulation (TMS) and electro encephalography (EEG) to examine the role of the posterior parietal cortex in motor learning. In session 1 a neurological examination will be performed and a clinical and anatomical MRI (Magnet Resonance Image) will be taken. Session 1 can be skipped if an MRI and a neurological exam have been performed at the NIH during the last year. In session 2 TMS will be used to examine the connection between posterior parietal cortex and primary motor cortex before and after rhythm training. Additionally, EEG will be recorded during the training session. In session 3 we will examine how the ability to tap to different beats relates to higher cognitive functions. We will record EEG during tapping simple beats and we will administer a pen and paper problem-solving test.

Outcome Measures

In session 2 the primary outcome measure will be change in conditioned Motor Evoked Potential (MEP) peak-to-peak amplitude after learning temporal motor sequences measured in the primary motor cortex. A secondary outcome measure will be the interregional coherence changes as measured by EEG during training. In session 3 the primary outcome will be performance on the tapping task and on the pen and paper test as well as the interregional coherence changes as measured by EEG during the tapping task. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00904332
Study type Observational
Source National Institutes of Health Clinical Center (CC)
Contact
Status Completed
Phase N/A
Start date May 14, 2009
Completion date December 29, 2011

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05623644 - Multimodal MR Imaging Study on ET and PD Patients Subjected With MRgFUS Thalamotomy
Active, not recruiting NCT03548779 - North Carolina Genomic Evaluation by Next-generation Exome Sequencing, 2 N/A
Completed NCT03295786 - Clinical Study to Test the Safety of CDNF by Brain Infusion in Patients With Parkinson's Disease Phase 1/Phase 2
Completed NCT03722212 - Early Diagnosis of the GLUT1 Deficiency Syndrome With a Blood Based Test N/A
Recruiting NCT05973929 - Movement Disorders in Multiple Sclerosis Patients
Terminated NCT02823158 - Bilateral Pallidal Stimulation in Patients With Advanced Parkinson's Disease-LATESTIM N/A
Enrolling by invitation NCT01210781 - Target Planning for Placement of DBS-electrodes and Follow-up of the Clinical Efficacy of Stimulation
Enrolling by invitation NCT00355927 - Sedation During Microelectrode Recordings Before Deep Brain Stimulation for Movement Disorders. N/A
Completed NCT00037167 - Effects of Exercise Poles on Older Adults During Exercise Walking Phase 1/Phase 2
Recruiting NCT04784494 - MST for Parkinson's Disease N/A
Terminated NCT03270189 - Effect of the Visual Information Change in Functional Dystonia N/A
Recruiting NCT04061135 - Neurophysiological, Behavioral, and Cognitive Networks in Movement Disorders N/A
Recruiting NCT04176692 - The Effects of Muscle Characteristics on the Control of Shoulder Complex During Functional Movements
Suspended NCT04912115 - Randomized, Double-Blind, Active Placebo-Controlled Study of Ketamine to Treat Levodopa-Induced Dyskinesia Phase 2
Completed NCT00500994 - Neurobiology of Functional Movement Disorder and Non-Epileptic Seizures Early Phase 1
Completed NCT04536987 - Robot Therapy for Rehabilitation of Hand Movement After Stroke Phase 2
Recruiting NCT00001208 - Botulinum Toxin for the Treatment of Involuntary Movement Disorders
Completed NCT02392078 - Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System
Completed NCT00552474 - Deep Brain Stimulation to Treat Symptoms of Parkinson's Disease N/A
Not yet recruiting NCT05032911 - Sensorimotor Control in People With and Without Neck Pain